Что такое Unicode? Кодировка "Юникод": стандарт кодирования символов Кодировка unicode таблица

Юникод - это очень большой и сложный мир, ведь стандарт позволяет ни много ни мало представлять и работать в компьютере со всеми основными письменностями мира. Некоторые системы письма существуют уже более тысячи лет, причём многие из них развивались почти независимо друг от друга в разных уголках мира. Люди так много всего придумали и оно зачастую настолько непохоже друг на друга, что объединить всё это в единый стандарт было крайне непростой и амбициозной задачей.

Чтобы по-настоящему разобраться с Юникодом нужно хотя бы поверхностно представлять себе особенности всех письменностей, с которыми позволяет работать стандарт. Но так ли это нужно каждому разработчику? Мы скажем, что нет. Для использования Юникода в большинстве повседневных задач, достаточно владеть разумным минимумом сведений, а дальше углубляться в стандарт по мере необходимости.

В статье мы расскажем об основных принципах Юникода и осветим те важные практические вопросы, с которыми разработчики непременно столкнутся в своей повседневной работе.

Зачем понадобился Юникод?

До появления Юникода, почти повсеместно использовались однобайтные кодировки, в которых граница между самими символами, их представлением в памяти компьютера и отображением на экране была довольно условной. Если вы работали с тем или иным национальным языком, то в вашей системе были установлены соответствующие шрифты-кодировки, которые позволяли отрисовывать байты с диска на экране таким образом, чтобы они представляли смысл для пользователя.

Если вы распечатывали на принтере текстовый файл и на бумажной странице видели набор непонятных кракозябр, это означало, что в печатающее устройство не загружены соответствующие шрифты и оно интерпретирует байты не так, как вам бы этого хотелось.

У такого подхода в целом и однобайтовых кодировок в частности был ряд существенных недостатков:

  1. Можно было одновременно работать лишь с 256 символами, причём первые 128 были зарезервированы под латинские и управляющие символы, а во второй половине кроме символов национального алфавита нужно было найти место для символов псевдографики (╔ ╗).
  2. Шрифты были привязаны к конкретной кодировке.
  3. Каждая кодировка представляла свой набор символов и конвертация из одной в другую была возможна только с частичными потерями, когда отсутствующие символы заменялись на графически похожие.
  4. Перенос файлов между устройствами под управлением разных операционных систем был затруднителен. Нужно было либо иметь программу-конвертер, либо таскать вместе с файлом дополнительные шрифты. Существование Интернета каким мы его знаем было невозможным.
  5. В мире существуют неалфавитные системы письма (иероглифическая письменность), которые в однобайтной кодировке непредставимы в принципе.

Основные принципы Юникода

Все мы прекрасно понимаем, что компьютер ни о каких идеальных сущностях знать не знает, а оперирует битами и байтами. Но компьютерные системы пока создают люди, а не машины, и для нас с вами иногда бывает удобнее оперировать умозрительными концепциями, а затем уже переходить от абстрактного к конкретному.

Важно! Одном из центральных принципов в философии Юникода является чёткое разграничение между символами, их представлением в компьютере и их отображением на устройстве вывода.

Вводится понятие абстрактного юникод-символа, существующего исключительно в виде умозрительной концепции и договорённости между людьми, закреплённой стандартом. Каждому юникод-символу поставлено в соответствие неотрицательное целое число, именуемое его кодовой позицией (code point).

Так, например, юникод-символ U+041F - это заглавная кириллическая буква П. Существует несколько возможностей представления данного символа в памяти компьютера, ровно как и несколько тысяч способов отображения его на экране монитора. Но при этом П, оно и в Африке будет П или U+041F.

Это хорошо нам знакомая инкапсуляция или отделение интерфейса от реализации - концепция, отлично зарекомендовавшая себя в программировании.

Получается, что руководствуясь стандартом, любой текст можно закодировать в виде последовательности юникод-символов

Привет U+041F U+0440 U+0438 U+0432 U+0435 U+0442
записать на листочке, упаковать в конверт и переслать в любой конец Земли. Если там знают о существовании Юникода, то текст будет воспринят ими ровно так же, как и нами с вами. У них не будет ни малейших сомнений, что предпоследний символ - это именно кириллическая строчная е (U+0435), а не скажем латинская маленькая e (U+0065). Обратите внимание, что мы ни слова не сказали о байтовом представлении.

Хотя юникод-символы и называются символами, они далеко не всегда соответствуют символу в традиционно-наивном понимании, например букве, цифре, пунктуационному знаку или иероглифу. (Подробнее смотри под спойлером.)

Примеры различных юникод-символов

Существуют чисто технические юникод-символы, например:

  • U+0000: нулевой символ;
  • U+D800–U+DFFF: младшие и старшие суррогаты для технического представления кодовых позиций в диапазоне от 10000 до 10FFFF (читай: за пределами БМЯП/BMP) в семействе кодировок UTF-16;
  • и т.д.
Существуют пунктуационные маркеры, например U+200F: маркер смены направления письма справа-налево.

Существует целая когорта пробелов различной ширины и назначения (см. отличную хабра-статью: всё (или почти всё) о пробеле):

  • U+0020 (пробел);
  • U+00A0 (неразрывный пробел, в HTML);
  • U+2002 (полукруглая шпация или En Space);
  • U+2003 (круглая шпация или Em Space);
  • и т.д.
Существуют комбинируемые диакритические знаки (сombining diacritical marks) - всевозможные штрихи, точки, тильды и т.д., которые меняют/уточняют значение предыдущего знака и его начертание. Например:
  • U+0300 и U+0301: знаки основного (острого) и второстепенного (слабого) ударений;
  • U+0306: кратка (надстрочная дуга), как в й;
  • U+0303: надстрочная тильда;
  • и т.д.
Существует даже такая экзотика, как языковые тэги (U+E0001, U+E0020–U+E007E, и U+E007F), которые сейчас находятся в подвешенном состоянии. Они задумывались как возможность маркировать определённые участки текста как относящиеся к тому или иному варианту языку (скажем американский и британский вариант английского), что могло влиять на детали отображения текста.

Что такое символ, чем отличается графемный кластер (читай: воспринимаемое как единое целое изображение символа) от юникод-символа и от кодового кванта мы расскажем в следующий раз.

Кодовое пространство Юникода

Кодовое пространство Юникода состоит из 1 114 112 кодовых позиций в диапазоне от 0 до 10FFFF. Из них к девятой версии стандарта значения присвоены лишь 128 237. Часть пространства зарезервирована для частного использования и консорциум Юникода обещает никогда не присваивать значения позициям из этих специальный областей.

Ради удобства всё пространство поделено на 17 плоскостей (сейчас задействовано шесть их них). До недавнего времени было принято говорить, что скорее всего вам придётся столкнуться только с базовой многоязыковой плоскостью (Basic Multilingual Plane, BMP), включающей в себя юникод-символы от U+0000 до U+FFFF. (Забегая немного вперёд: символы из BMP представляются в UTF-16 двумя байтами, а не четырьмя). В 2016 году этот тезис уже вызывает сомнения. Так, например, популярные символы Эмодзи вполне могут встретиться в пользовательском сообщении и нужно уметь их корректно обрабатывать.

Кодировки

Если мы хотим переслать текст через Интернет, то нам потребуется закодировать последовательность юникод-символов в виде последовательности байтов.

Стандарт Юникода включает в себя описание ряда юникод-кодировок, например UTF-8 и UTF-16BE/UTF-16LE, которые позволяют кодировать всё пространство кодовых позиций. Конвертация между этими кодировками может свободно осуществляться без потерь информации.

Также никто не отменял однобайтные кодировки, но они позволяют закодировать свой индивидуальный и очень узкий кусочек юникод-спектра - 256 или менее кодовых позиций. Для таких кодировок существуют и доступны всем желающим таблицы, где каждому значению единственного байта сопоставлен юникод-символ (см. например CP1251.TXT). Несмотря на ограничения, однобайтные кодировки оказываются весьма практичными, если речь идёт о работе с большим массивом моноязыковой текстовой информации.

Из юникод-кодировок самой распространённой в Интернете является UTF-8 (она завоевала пальму первенства в 2008 году), главным образом благодаря её экономичности и прозрачной совместимости с семибитной ASCII. Латинские и служебные символы, основные знаки препинания и цифры - т.е. все символы семибитной ASCII - кодируются в UTF-8 одним байтом, тем же, что и в ASCII. Символы многих основных письменностей, не считая некоторых более редких иероглифических знаков, представлены в ней двумя или тремя байтами. Самая большая из определённых стандартом кодовых позиций - 10FFFF - кодируется четырьмя байтами.

Обратите внимание, что UTF-8 - это кодировка с переменной длиной кода. Каждый юникод-символ в ней представляется последовательностью кодовых квантов с минимальной длиной в один квант. Число 8 означает битовую длину кодового кванта (code unit) - 8 бит. Для семейства кодировок UTF-16 размер кодового кванта составляет, соответственно, 16 бит. Для UTF-32 - 32 бита.

Если вы пересылаете по сети HTML-страницу с кириллическим текстом, то UTF-8 может дать весьма ощутимый выигрыш, т.к. вся разметка, а также JavaScript и CSS блоки будут эффективно кодироваться одним байтом. К примеру главная страница Хабра в UTF-8 занимает 139Кб, а в UTF-16 уже 256Кб. Для сравнения, если использовать win-1251 с потерей возможности сохранять некоторые символы, то размер, по сравнению с UTF-8, сократится всего на 11Кб до 128Кб.

Для хранения строковой информации в приложениях часто используются 16-битные юникод-кодировки в силу их простоты, а так же того факта, что символы основных мировых систем письма кодируются одним шестнадцатибитовым квантом. Так, например, Java для внутреннего представления строк успешно применяет UTF-16. Операционная система Windows внутри себя также использует UTF-16.

В любом случае, пока мы остаёмся в пространстве Юникода, не так уж и важно, как хранится строковая информация в рамках отдельного приложения. Если внутренний формат хранения позволяет корректно кодировать все миллион с лишним кодовых позиций и на границе приложения, например при чтении из файла или копировании в буфер обмена, не происходит потерь информации, то всё хорошо.

Для корректной интерпретации текста, прочитанного с диска или из сетевого сокета, необходимо сначала определить его кодировку. Это делается либо с использованием метаинформации, предоставленной пользователем, записанной в тексте или рядом с ним, либо определяется эвристически.

В сухом остатке

Информации много и имеет смысл привести краткую выжимку всего, что было написано выше:
  • Юникод постулирует чёткое разграничение между символами, их представлением в компьютере и их отображением на устройстве вывода.
  • Юникод-символы не всегда соответствуют символу в традиционно-наивном понимании, например букве, цифре, пунктуационному знаку или иероглифу.
  • Кодовое пространство Юникода состоит из 1 114 112 кодовых позиций в диапазоне от 0 до 10FFFF.
  • Базовая многоязыковая плоскость включает в себя юникод-символы от U+0000 до U+FFFF, которые кодируются в UTF-16 двумя байтами.
  • Любая юникод-кодировка позволяет закодировать всё пространство кодовых позиций Юникода и конвертация между различными такими кодировками осуществляется без потерь информации.
  • Однобайтные кодировки позволяют закодировать лишь небольшую часть юникод-спектра, но могут оказаться полезными при работе с большим объёмом моноязыковой информации.
  • Кодировки UTF-8 и UTF-16 обладают переменной длиной кода. В UTF-8 каждый юникод-символ может быть закодирован одним, двумя, тремя или четырьмя байтами. В UTF-16 - двумя или четырьмя байтами.
  • Внутренний формат хранения текстовой информации в рамках отдельного приложения может быть произвольным при условии корректной работы со всем пространством кодовых позиций Юникода и отсутствии потерь при трансграничной передаче данных.

Краткое замечание про кодирование

С термином кодирование может произойти некоторая путаница. В рамках Юникода кодирование происходит дважды. Первый раз кодируется набор символов Юникода (character set), в том смысле, что каждому юникод-символу ставится с соответствие кодовая позиция. В рамках этого процесса набор символов Юникода превращается в кодированный набор символов (coded character set). Второй раз последовательность юникод-символов преобразуется в строку байтов и этот процесс также называется кодирование.

В англоязычной терминологии существуют два разных глагола to code и to encode, но даже носители языка зачастую в них путаются. К тому же термин набор символов (character set или charset) используется в качестве синонима к термину кодированный набор символов (coded character set).

Всё это мы говорим к тому, что имеет смысл обращать внимание на контекст и различать ситуации, когда речь идёт о кодовой позиции абстрактного юникод-символа и когда речь идёт о его байтовом представлении.

В заключение

В Юникоде так много различных аспектов, что осветить всё в рамках одной статьи невозможно. Да и ненужно. Приведённой выше информации вполне достаточно, чтобы не путаться в основных принципах и работать с текстом в большинстве повседневных задач (читай: не выходя за рамки BMP). В следующих статьях мы расскажем о нормализации, дадим более полный исторический обзор развития кодировок, побеседуем о проблемах русскоязычной юникод-терминологии, а также сделаем материал о практических аспектах использования UTF-8 и UTF-16.

(коды от 0 до 127), т.е. одним байтом кодируются латинские буквы, цифры и специальные символы. Русские буквы (кириллица) представляются 16-битными (двухбайтными) кодами:

110XXXXX 10XXXXXX,

где X обозначены двоичные разряды для размещения кода символа в соответствии с таблицей UNICODE .

Юникод (англ. Unicode) - стандарт кодирования символов, позволяющий представить знаки почти всех письменных языков. Представляемые в юникоде символы кодируются целыми числами без знака. Эти числа будем называть кодами символов в юникоде или просто UNICODE . Юникод имеет несколько форм представления символов в компьютере: UTF-8, UTF-16 (UTF-16BE, UTF-16LE) и UTF-32 (UTF-32BE, UTF-32LE) . (Англ. Unicode transformation format - UTF).

Рассмотрим, как кодируется в UTF-8 буква Ж . Её UNICODE - 1046 10 или 0416 16 или 10000 010110 2 . UNICODE в двоичном виде разбивается на две части: пять левых бит и шесть правых. Левая часть дополняется до байта признаком 110 двухбайтного кода UTF-8 : 110 10000. К правой части приписываются два бита 10 признака продолжения многобайтного кода: 10 010110. Окончательно код буквы Ж в UTF-8 выглядит так:

110 10000 10 010110 2
или D0 96 16

Таким образом, русская буква кодируется дважды: сначала в 11-битный UNICODE , а затем - в 16-битный UTF-8.

В приведённой ниже таблице, кроме кодов UNICODE и UTF-8 в шестнадцатиричной системе счисления, даны коды UTF-8 в десятичной системе счисления и для сравнения коды кириллицы в кодировке CP-1251 , иначе называемой windovs-1251 .

Таблица кодов кириллицы в UTF-8
Символ UNICODE UTF-8 CP-1251
Шестн. Десят Шестн. Десят
А 0410 1040 D090 208 144 192
Б 0411 1041 D091 208 145 193
В 0412 1042 D092 208 146 194
Г 0413 1043 D093 208 147 195
Д 0414 1044 D094 208 148 196
Е 0415 1045 D095 208 149 197
Ж 0416 1046 D096 208 150 198
З 0417 1047 D097 208 151 199
И 0418 1048 D098 208 152 200
Й 0419 1049 D099 208 153 201
К 041A 1050 D09A 208 154 202
Л 041B 1051 D09B 208 155 203
М 041C 1052 D09C 208 156 204
Н 041D 1053 D09D 208 157 205
О 041E 1054 D09E 208 158 206
П 041F 1055 D09F 208 159 207
Р 0420 1056 D0A0 208 160 208
С 0421 1057 D0A1 208 161 209
Т 0422 1058 D0A2 208 162 210
У 0423 1059 D0A3 208 163 211
Ф 0424 1060 D0A4 208 164 212
Х 0425 1061 D0A5 208 165 213
Ц 0426 1062 D0A6 208 166 214
Ч 0427 1063 D0A7 208 167 215
Ш 0428 1064 D0A8 208 168 216
Щ 0429 1065 D0A9 208 169 217
Ъ 042A 1066 D0AA 208 170 218
Ы 042B 1067 D0AB 208 171 219
Ь 042C 1068 D0AC 208 172 220
Э 042D 1069 D0AD 208 173 221
Ю 042E 1070 D0AE 208 174 222
Я 042F 1071 D0AF 208 175 223
а 0430 1072 D0B0 208 176 224
б 0431 1073 D0B1 208 177 225
в 0432 1074 D0B2 208 178 226
г 0433 1075 D0B3 208 179 227
д 0434 1076 D0B4 208 180 228
е 0435 1077 D0B5 208 181 229
ж 0436 1078 D0B6 208 182 230
з 0437 1079 D0B7 208 183 231
и 0438 1080 D0B8 208 184 232
й 0439 1081 D0B9 208 185 233
к 043A 1082 D0BA 208 186 234
л 043B 1083 D0BB 208 187 235
м 043C 1084 D0BC 208 188 236
н 043D 1085 D0BD 208 189 237
о 043E 1086 D0BE 208 190 238
п 043F 1087 D0BF 208 191 239
р 0440 1088 D180 209 128 240
с 0441 1089 D181 209 129 241
т 0442 1090 D182 209 130 242
у 0443 1091 D183 209 131 243
ф 0444 1092 D184 209 132 244
х 0445 1093 D185 209 133 245
ц 0446 1094 D186 209 134 246
ч 0447 1095 D187 209 135 247
ш 0448 1096 D188 209 136 248
щ 0449 1097 D189 209 137 249
ъ 044A 1098 D18A 209 138 250
ы 044B 1099 D18B 209 139 251
ь 044C 1100 D18C 209 140 252
э 044D 1101 D18D 209 141 253
ю 044E 1102 D18E 209 142 254
я 044F 1103 D18F 209 143 255
Символы вне общего правила
Ё 0401 1025 D001 208 101 168
ё 0451 1025 D191 209 145 184

Стандарт предложен в 1991 году некоммерческой организацией «Консорциум Юникода» (англ. Unicode Consortium, Unicode Inc.). Применение этого стандарта позволяет закодировать очень большое число символов из разных письменностей: в документах Unicode могут соседствовать китайские иероглифы, математические символы, буквы греческого алфавита, латиницы и кириллицы, при этом становится ненужным переключение кодовых страниц.

Стандарт состоит из двух основных разделов: универсальный набор символов (англ. UCS, universal character set) и семейство кодировок (англ. UTF, Unicode transformation format). Универсальный набор символов задаёт однозначное соответствие символов кодам - элементам кодового пространства, представляющим неотрицательные целые числа. Семейство кодировок определяет машинное представление последовательности кодов UCS.

Стандарт Unicode был разработан с целью создания единой кодировки символов всех современных и многих древних письменных языков. Каждый символ в этом стандарте кодируется 16 битами, что позволяет ему охватить несравненно большее количество символов, чем принятые ранее 8-битовые кодировки. Еще одним важным отличием Unicode от других систем кодировки является то, что он не только приписывает каждому символу уникальный код, но и определяет различные характеристики этого символа, например:

Тип символа (прописная буква, строчная буква, цифра, знак препинания и т.д.);

Атрибуты символа (отображение слева направо или справа налево, пробел, разрыв строки и т.д.);

Соответствующая прописная или строчная буква (для строчных и прописных букв соответственно);

Соответствующее числовое значение (для цифровых символов).

Весь диапазон кодов от 0 до FFFF разбит на несколько стандартных подмножеств, каждое из которых соответствует либо алфавиту какого-то языка, либо группе специальных символов, сходных по своим функциям. На приведенной ниже схеме содержится общий перечень подмножеств Unicode 3.0 (рисунок 2).

Рисунок 2

Стандарт Unicode является основой для хранения и текста во многих современных компьютерных системах. Однако, он не совместим с большинством Интернет-протоколов, поскольку его коды могут содержать любые байтовые значения, а протоколы обычно используют байты 00 - 1F и FE - FF в качестве служебных. Для достижения совместимости были разработаны несколько форматов преобразования Unicode (UTFs, Unicode Transformation Formats), из которых на сегодня наиболее распространенным является UTF-8. Этот формат определяет следующие правила преобразования каждого кода Unicode в набор байтов (от одного до трех), пригодных для транспортировки Интернет-протоколами.


Здесь x,y,z обозначают биты исходного кода, которые должны извлекаться, начиная с младшего, и заноситься в байты результата справа налево, пока не будут заполнены все указанные позиции.

Дальнейшее развитие стандарта Unicode связано с добавлением новых языковых плоскостей, т.е. символов в диапазонах 10000 - 1FFFF, 20000 - 2FFFF и т.д., куда предполагается включать кодировку для письменностей мертвых языков, не попавших в таблицу, приведенную выше. Для кодирования этих дополнительных символов был разработан новый формат UTF-16.

Таким образом, существует 4 основных способа кодировки байтами в формате Unicode:

UTF-8: 128 символов кодируются одним байтом (формат ASCII), 1920 символов кодируются 2-мя байтами ((Roman, Greek, Cyrillic, Coptic, Armenian, Hebrew, Arabic символы), 63488 символов кодируются 3-мя байтами (Китайский, японский и др.) Оставшиеся 2 147 418 112 символы (еще не использованы) могут быть закодированы 4, 5 или 6-ю байтами.

UCS-2: Каждый символ представлен 2-мя байтами. Данная кодировка включает лишь первые 65 535 символов из формата Unicode.

UTF-16:Является расширением UCS-2, включает 1 114 112 символов формата Unicode. Первые 65 535 символов представлены 2-мя байтами, остальные - 4-мя байтами.

USC-4: Каждый символ кодируется 4-мя байтами.

Юникод

Материал из Википедии - свободной энциклопедии

Перейти к: навигация , поиск

Юнико́д (чаще всего) или Унико́д (англ. Unicode ) - стандарт кодирования символов , позволяющий представить знаки практически всех письменных языков .

Стандарт предложен в 1991 году некоммерческой организацией «Консорциум Юникода» (англ. Unicode Consortium , Unicode Inc . ). Применение этого стандарта позволяет закодировать очень большое число символов из разных письменностей: в документах Unicode могут соседствовать китайские иероглифы , математические символы, буквы греческого алфавита , латиницы и кириллицы , при этом становится ненужным переключение кодовых страниц .

Стандарт состоит из двух основных разделов: универсальный набор символов (англ. UCS, universal character set ) и семейство кодировок (англ . UTF, Unicode transformation format ). Универсальный набор символов задаёт однозначное соответствие символов кодам - элементам кодового пространства, представляющим неотрицательные целые числа. Семейство кодировок определяет машинное представление последовательности кодов UCS.

Коды в стандарте Юникод разделены на несколько областей. Область с кодами от U+0000 до U+007F содержит символы набора ASCII с соответствующими кодами. Далее расположены области знаков различных письменностей, знаки пунктуации и технические символы. Часть кодов зарезервирована для использования в будущем. Под символы кириллицы выделены области знаков с кодами от U+0400 до U+052F, от U+2DE0 до U+2DFF, от U+A640 до U+A69F (см. Кириллица в Юникоде ).

    1 Предпосылки создания и развитие Юникода

    2 Версии Юникода

    3 Кодовое пространство

    4 Система кодирования

    5 Модифицирующие символы

    6 Формы нормализации

    • 6.1 Примеры

    7 Двунаправленное письмо

    8 Представленные символы

    9 ISO/IEC 10646

    10 Способы представления

    • 10.1 UTF-8

      10.2 Порядок байтов

      10.3 Юникод и традиционные кодировки

      10.4 Реализации

    11 Методы ввода

    • 11.1 Microsoft Windows

      11.2 Macintosh

      11.3 GNU/Linux

    12 Проблемы Юникода

    13 «Юникод» или «Уникод»?

    14 См. также

Предпосылки создания и развитие Юникода

К концу 1980-х годов стандартом стали 8-битные символы, при этом существовало множество разных 8-битных кодировок, и постоянно появлялись всё новые. Это объяснялось как постоянным расширением круга поддерживаемых языков, так и стремлением создать кодировку, частично совместимую с какой-нибудь другой (характерный пример - появление альтернативной кодировки для русского языка, обусловленное эксплуатацией западных программ, созданных для кодировки CP437 ). В результате появилось несколько проблем:

    Проблема «кракозябр » (отображения документов в неправильной кодировке): её можно было решить либо последовательным внедрением методов указания используемой кодировки, либо внедрением единой для всех кодировки.

    Проблема ограниченности набора символов: её можно было решить либо переключением шрифтов внутри документа, либо внедрением «широкой» кодировки. Переключение шрифтов издавна практиковалось в текстовых процессорах , причём часто использовались шрифты с нестандартной кодировкой , т. н. «dingbat fonts» - в итоге при попытке перенести документ в другую систему все нестандартные символы превращались в кракозябры.

    Проблема преобразования одной кодировки в другую: её можно было решить либо составлением таблиц перекодировки для каждой пары кодировок, либо использованием промежуточного преобразования в третью кодировку, включающую все символы всех кодировок.

    Проблема дублирования шрифтов: традиционно для каждой кодировки делался свой шрифт, даже если эти кодировки частично (или полностью) совпадали по набору символов: эту проблему можно было решить, делая «большие» шрифты, из которых потом выбираются нужные для данной кодировки символы - однако это требует создания единого реестра символов, чтобы определять, чему что соответствует.

Было признано необходимым создание единой «широкой» кодировки. Кодировки с переменной длиной символа, широко использующиеся в Восточной Азии, были признаны слишком сложными в использовании, поэтому было решено использовать символы фиксированной ширины. Использование 32-битных символов казалось слишком расточительным, поэтому было решено использовать 16-битные.

Таким образом, первая версия Юникода представляла собой кодировку с фиксированным размером символа в 16 бит, то есть общее число кодов было 2 16 (65 536). Отсюда происходит практика обозначения символов четырьмя шестнадцатеричными цифрами (например, U+04F0). При этом в Юникоде планировалось кодировать не все существующие символы, а только те, которые необходимы в повседневном обиходе. Редко используемые символы должны были размещаться в «области пользовательских символов» (private use area), которая первоначально занимала коды U+D800…U+F8FF. Чтобы использовать Юникод также и в качестве промежуточного звена при преобразовании разных кодировок друг в друга, в него включили все символы, представленные во всех наиболее известных кодировках.

В дальнейшем, однако, было принято решение кодировать все символы и в связи с этим значительно расширить кодовую область. Одновременно с этим, коды символов стали рассматриваться не как 16-битные значения, а как абстрактные числа, которые в компьютере могут представляться множеством разных способов (см. Способы представления ).

Поскольку в ряде компьютерных систем (например, Windows NT ) фиксированные 16-битные символы уже использовались в качестве кодировки по умолчанию, было решено все наиболее важные знаки кодировать только в пределах первых 65 536 позиций (так называемая англ. basic multilingual plane , BMP ). Остальное пространство используется для «дополнительных символов» (англ. supplementary characters ): систем письма вымерших языков или очень редко используемых китайских иероглифов, математических и музыкальных символов.

Для совместимости со старыми 16-битными системами была изобретена система UTF-16 , где первые 65 536 позиций, за исключением позиций из интервала U+D800…U+DFFF, отображаются непосредственно как 16-битные числа, а остальные представляются в виде «суррогатных пар» (первый элемент пары из области U+D800…U+DBFF, второй элемент пары из области U+DC00…U+DFFF). Для суррогатных пар была использована часть кодового пространства (2048 позиций), ранее отведённого для «символов для частного использования».

Поскольку в UTF-16 можно отобразить только 2 20 +2 16 −2048 (1 112 064) символов, то это число и было выбрано в качестве окончательной величины кодового пространства Юникода.

Хотя кодовая область Юникода была расширена за пределы 2 16 уже в версии 2.0, первые символы в «верхней» области были размещены только в версии 3.1.

Роль этой кодировки в веб-секторе постоянно растёт, на начало 2010 доля веб-сайтов, использующих Юникод, составила около 50 %.

Юникод (по-английски Unicode) - это стандарт кодирования символов. Проще говоря, это таблица соответствия текстовых знаков ( , букв, элементов пунктуации ) двоичным кодам. Компьютер понимает только последовательность нулей и единиц. Чтобы он знал, что именно должен отобразить на экране, необходимо присвоить каждому символу свой уникальный номер. В восьмидесятых, знаки кодировали одним байтом, то есть восемью битами (каждый бит это 0 или 1). Таким образом получалось, что одна таблица (она же кодировка или набор) может вместить только 256 знаков. Этого может не хватить даже для одного языка. Поэтому, появилось много разных кодировок, путаница с которыми часто приводила к тому, что на экране вместо читаемого текста появлялись какие-то странные кракозябры. Требовался единый стандарт, которым и стал Юникод. Самая используемая кодировка - UTF-8 (Unicode Transformation Format) для изображения символа задействует от 1 до 4 байт.

Символы

Символы в таблицах Юникода пронумерованы шестнадцатеричными числами. Например, кириллическая заглавная буква М обозначена U+041C. Это значит, что она стоит на пересечении строки 041 и столбца С. Её можно просто скопировать и потом вставить куда-либо. Чтобы не рыться в многокилометровом списке следует воспользоваться поиском. Зайдя на страницу символа, вы увидите его номер в Юникоде и способ начертания в разных шрифтах. В строку поиска можно вбить и сам знак, даже если вместо него отрисовывается квадратик, хотя бы для того, чтобы узнать, что это было. Ещё, на этом сайте есть специальные (и - случайные) наборы однотипных значков, собранные из разных разделов, для удобства их использования.

Стандарт Юникод - международный. Он включает знаки почти всех письменностей мира. В том числе и тех, которые уже не применяются. Египетские иероглифы, германские руны, письменность майя, клинопись и алфавиты древних государств. Представлены и обозначения мер и весов, нотных грамот, математических понятий.

Сам консорциум Юникода не изобретает новых символов. В таблицы добавляются те значки, которые находят своё применение в обществе. Например, знак рубля активно использовался в течении шести лет прежде чем был добавлен в Юникод. Пиктограммы эмодзи (смайлики) тоже сначала получили широкое применение в Япониии прежде чем были включены в кодировку. А вот товарные знаки, и логотипы компаний не добавляются принципиально. Даже такие распространённые как яблоко Apple или флаг Windows. На сегодняшний день, в версии 8.0 закодировано около 120 тысяч символов.



Что еще почитать