Понятие тождества. Значение слова тождество Какое равенство называется тождеством

то, посредством чего одна вещь абсолютно подобна другой. Понимание обычно предполагает подведение («идентификацию») нового знания под то, что мы уже знаем. Именно в этом смысле тождество - форма всякого понимания. Мейерсон видел в синтезе всех знаний об универсуме, в их редукции к тождеству идеал науки: как раз, наука должна прийти в результате к единой формуле (представленной сегодня формулой относительности), из которой мы сможем вывести все частные законы науки. Этот идеал предстает скорее как философский, чем как научный, потому что научный прогресс ведет скорее к бесконечной диверсификации методов науки (специализация), и ее непосредственная цель состоит скорее в вечной возможности познания новых объектов, чем в унификации методов (эта работа по унификации составляет цель размышления о науке, эпистемологии).

Отличное определение

Неполное определение ↓

ТОЖДЕСТВО

Понятие Т. является осн. понятием философии, логики и математики, поэтому к нему относятся все трудности, связанные с выяснением и определением исходных (основных, фундаментальных) понятий науки. В комплексе вопросов, относящихся к понятию Т., особого внимания заслуживают два: вопрос о Т. "... самом по себе. Признаем мы, что оно существует, или не признаем?" (Plato, Phaed. 74 b; рус. пер. Соч., т. 2, 1970) и вопрос о Т. вещей. (Т. вещей выражают обычно символом "=", к-рый встречается впервые у Р. Рекорда в его "The whetstone of witte", L., 1557.) Первый из этих вопросов является частью вопроса об онтологич. статусе абстрактных объектов (см., напр., Отношение, Универсалии), второй имеет самостоят. значение. Как бы эти вопросы ни решались в философии, для логики и математики их решение всегда эквивалентно решению вопроса об определении понятия Т. Однако нетрудно убедиться, проанализировав любое из известных логических (математических) определений Т. (вместо со способом его обоснования), что "идея Т." и так или иначе определенное "понятие Т." – это не одно и то же. Идея Т. п р е д в а р я е т любое определение понятия (предиката) Т., равно как и вводимое определением понятие "тождественные вещи". Это обусловлено тем, что суждение о Т. к.-л. объектов всегда предполагает, что уже выполнены (или должны быть выполнены) какие-то другие, вспомогательные, но необходимые – отнюдь не посторонние для данного суждения – отождествления. Именно в связи с проблемой "допустимых отождествлений" филос. анализ может послужить полезной предпосылкой для логического и матем. анализа понятия Т. Принцип индивидуации. В соответствии с филос. т. зр. следует различать онтологич., гносеологич. и семантич. проблемы Т. вещей. Онтологическая проблема Т. – это проблема Т. вещей "самих по себе" или in se – по их "внутреннему обстоянию" (Г. Кантор). Она ставится и решается на основе п р и н ц и п а и н д и в и д у а ц и и (principium individuationis): всякая вещь универсума есть единств. вещь; двух различных вещей, из к-рых каждая была бы тою же вещью, что и другая, не существует. Именно "...в соответствии с началами индивидуации, которые проистекают от материи" мы принимаем, что "... всякая самосущая вещь, составленная из материи и формы, составлена из индивидуальной формы и индивидуальной материи" (Фома Аквинский, цит. по кн.: "Антология мировой философии", т. 1, ч. 2, М., 1969, с. 847, 862). Принцип индивидуации не содержит в себе никакого указания на то, как индивидуализировать предметы универсума или как они индивидуализированы "сами по себе", поскольку это уже имеет место; он лишь постулирует абстрактную возможность такой индивидуализации. И это естественно, коль скоро мы понимаем его как принцип чисто онтологический. Вопрос о том, как индивидуализировать предметы универсума, есть уже гносеологич. вопрос. Но в этом случае никакая возможная индивидуализация не выводит нас за пределы того и н т е р в а л а абстракции, к-рым определяется универсум рассуждения (см. Универсум). Хотя принцип индивидуации является древним филос. утверждением о мире, его аналоги можно найти и в (современных) собственно научных (математических, физических и др.) теориях. В этой связи можно сослаться на идею "субстанциональных", или мировых, точек (пространственных точек в определенный момент времени) в четырехмерном (абстрактном) "мире Минковского" и связанную с ней идею пространственно-временн?й модели физич. реальности, позволяющую индивидуа-лизировать каждый ее объект, или на принцип Паули, или, наконец, на гипотезу Г. Кантора о том, что любые два элемента произвольного множества различимы между собой. Можно даже считать, что принцип индивидуации лежит в основе всей классич. математики с ее – в известном смысле онтологическим – "само собой разумеющимся" постулатом упорядоченного (по величине) числового континуума. Принцип Т. неразличимых. Принимая принцип индивидуации, мы, тем не менее, как в повседневной практике, так и в теории, постоянно отождествляем различные предметы, т.е. говорим о разных предметах так, как если бы они были одной и той же вещью. Возникающая при этом абстракция отождествления различного была впервые явно отмечена Лейбницем в его знаменитом принципе Т. неразличимых (Principium identitatis indiscernibilium). Кажущееся противоречие между принципом индивидуации и принципом Т. неразличимых легко разъяснить. Противоречие возникает лишь тогда, когда, полагая, что, напр., x и у – разные вещи, в формулировке принципа Т. неразличимых имеют в виду их абсолютную, или онтологическую, неразличимость, а именно, когда думают, что неразличимость x и у предполагает, что x и у "сами по себе" не отличимы по любому признаку. Однако, если иметь в виду относительную, или гносеологическую, неразличимость x и у, напр. их неразличимость "для нас", хотя бы ту, с к-рой мы можем встретиться в результате практически осуществимого сравнения х и у (см. об этом в ст. Сравнение), то никакого противоречия не возникает. Если различать понятия "вещь", или предмет универсума "сам по себе", и "объект", или предмет универсума в познании, в практике, в отношении к др. предметам, то совместимость принципа Т. неразличимых и принципа индивидуации должна означать, что нет тождественных вещей, но есть тождественные объекты. Очевидно, что с онтологич. т. зр., выраженной в принципе индивидуации, Т. представляется абстракцией и, следовательно, идеализацией. Тем не менее оно имеет объективное основание в условиях существования вещей: практика убеждает нас в том, что существуют ситуации, в к-рых "разные" вещи ведут себя как "одна и та же" вещь. В этом смысле принцип Т. неразличимых выражает эмпирически подтверждаемый, основанный на опыте, факт нашей абстрагирующей деятельности. Поэтому "отождествление различного" по принципу Лейбница не следует понимать как упрощение или огрубление действительности, не соответствующее, вообще говоря, и с т и н н о м у п о р я д к у п р и р о д ы. Интервал абстракции отождест- вления. Неразличимость объектов, отождествляемых согласно принципу Т. неразличимых, может выражаться операционально – в их "поведении", истолковываться в терминах свойств, вообще определяться совокупностью нек-рых фиксиров. условий неразличимости. Эта совокупность условий (функций или предикатов), относительно к-рых к.-л. предметы универсума неразличимы, определяет интервал абстракции о т о ж д е с т в л е н и я этих предметов. Так, если на множестве предметов определено свойство А и предмет x им обладает, то для отождествления х и у в интервале абстракции, определяемом свойством А, необходимо и достаточно, чтобы предмет у также обладал свойством А, что символически можно выразить следующей аксиомой: A(x)?((x=y)?A(y)). Заметим, что при наличии "избыточной" информации о заведомом (естественно – "вне" данного интервала абстракции) различии предметов их отождествление "внутри" данного интервала абстракции может даже казаться парадоксальным. Типичный пример из теории множеств – "парадокс Сколема". Если смотреть "изнутри" интервала абстракции, определяемого свойством А, то х и у – абсолютно один и тот же объект, а не два предмета, как предполагается в приведенном выше рассуждении. Дело в том, что рассуждение о Т. двуx и, следовательно, различны х предметов возможно только в нек-ром метаинтервале, указывающем также на возможность индивидуализации x и у. Очевидно, что неразличимость x и у эквивалентна здесь их взаимозаменимости относительно свойства А, но, разумеется, не относительно любого свойства. В этой связи укажу на абстракцию актуальной различимости, вытека-ющую из принципа индивидуации и связанную с таким истолкованием этого принципа, при к-ром он сводится к утверждению о существовании условий, в к-рых индивидуализация всегда осуществима (напр., условий, в к-рых x и у уже не будут взаимозаменимы, что и позволит, естественно, говорить об их индивидуальности). В этом смысле принцип индивидуации отличается тем же характером, что и т.н. "чистые" постулаты существования в математике, и может рассматриваться как абстракция индивидуализации. Не говоря уже об "абстрактных" матем. объектах, очевидно, что и для "конкретных" физич. предметов природы условия индивидуализации любого из них отнюдь не всегда могут быть найдены или явно указаны в к.-л. конструктивном смысле. Более того, задача их разыскания иногда принципиально неосуществима, как об этом свидетельствует, напр., принцип "неделимости квантовых состояний" и обусловленная им, предписанная самой природой, неопределенность в нашем описании "индивидуального поведения" элементарных частиц. Д о п о л н е н и я. Интервал абстракции отождествления может быть столь (но не сколь угодно) широк, что в него войдут все (исходные) понятия (функции или предикаты) рассматриваемой в том или ином случае теории. Тогда говорят, что х=у для любого понятия А. В этом случае и квантор "для любого", и Т. имеют относительный характер – они p е л я т и в и з и р о в а н ы множеством понятий теории, к-рое ограничено, в свою очередь, осмысленностью этих понятий (и н т е р в а л о м значения) по отношению к предметам универсума данной теории. Напр., предикат "красный" не определен на множестве натуральных чисел и поэтому к нему не могут относиться слова "для любого предиката", когда говорят о Т. в арифметике. Такие с м ы с л о в ы е о г р а н и ч е н и я по сути дела всегда имеют место в приложениях теории, чем и исключаются противоречия, связанные с нарушением интервала абстракции отождествления. Поскольку в отождествлениях имеют в виду только предикаты данной теории – интервал абстракции отождествления фиксирован. Предметы универсума, неразличимые относительно каждого предиката теории, неразличимы абсолютно в данном интервале-абстракции и могут рассматриваться как "один и тот же" объект, что как раз и соответствует обычному истолкованию Т. Если относительно каждого такого предиката неразличимы все предметы универсума, то последний в этом случае будет представляться нам одночленной совокупностью, хотя в др. интервале абстракции он может и не быть таковым. Так, если условие А - тавтология, то в подразумеваемой предметной области все предметы тождественны в интервале А. Иначе говоря, тавтологии не могут служить критерием различимости объектов, они как бы проектируют универсум в точку, производя абстракцию отождествления элементов множества любой мощности, "превращая" разные элементы в "один и тот же" абстрактный объект. Неудивительно поэтому, что к аксиомам "чистого" предикатов исчисления первой ступени можно без противоречия присоединять формулу?хА(х)^/xA(x), выражающую тождественность (или абсолютную неразличимость) всех предметов универсума. По-видимому, эта неполнота чистого исчисления предикатов (элементарной логики) обусловлена именно его неонтологическим характере м. В прикладных логических исчислениях, в частности в теории множеств, выходя из сферы "чистой логики", мы вынуждены - во избежание парадоксов- фиксировать интервал абстракции отождествления. В этих случаях Т., поскольку речь идет об отождествлениях только в данной системе понятий, может быть введено конечным списком аксиом Т. для конкретных функций и предикатов рассматриваемой теории. Но постулируя т.о. те или иные отождествления, мы как бы ф о р м и р у е м универсум в соответствии с принципом Т. неразличимых. Значит универсум в этом смысле является эпистемологич. понятием, зависящим от наших абстракций. Вопрос, что считать "одним и тем же" объектом, каково число "различных" индивидуумов в предметной области (какова мощность области индивидуумов), – это в известном смысле вопрос о том, как мы применяем наши абстракции и какие именно, а также какова объективная область их применимости. В частности, это всегда вопрос об интервале абстракции. Вот почему с нашей т. зр. указание на интервал абстракции отождествления в определении Т. следует считать необходимым условием осмысленного применения " п о н я т и я Т.". Понятие "интервал абстракции отождествления" является гносеологич. дополнением к понятию абстракции отождествления и, в известном смысле (содержательным), его уточнением. Кроме того, вводя понятие Т. в интервале абстракции, мы легко достигаем необходимой общности в построении теории Т., избегая обычного "умножения понятий", связанного с различением терминов "тождественный", "подобный", "равный", "эквивалентный" и пр. В связи с вышесказанным определение предиката Т. в формулировке Гильберта – Бернайса, задаваемое, как известно, условиями: 1) х=х 2) х=y? (A(x)? А(у)), можно интерпретировать так, что условие 2) будет выражать Т. предметов универсума в интервале абстракции, определяемом множеством аксиом, задаваемых схемой аксиом 2). Что же касается условия 1), то, выражая свойство рефлексивности Т., оно в известном смысле соответствует принципу индивидуации. По крайней мере, очевидно, что из принципа индивидуации не следует отрицания условия х=х, поскольку между принципом индивидуации и традиц. принципом Т. (абстрактным Т. – lex identitatis), выражаемым формулой х=х, имеется следующая определенная "связь по смыслу": если бы индивидуальный предмет универсума не был тождествен с самим собой, то он не был бы самим собой, а был бы другим предметом, что, конечно, ведет к отрицанию принципа индивидуации (ср. Энгельс Ф.: "... тождество с собой уже с самого начала имеет своим необходимым дополнением отличие о т в с е г о д р у г о г о" – Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20, с. 530). Т.о., принцип индивидуации предполагает утверждение х=х, к-рое является его необходимым условием – логической о с н о в о й понятия индивидуального. Достаточно констатировать совместимость х=х с принципом индивидуации, чтобы, основываясь на совместимости 1) и 2), утверждать совместимость принципа индивидуации с принципом Т. неразличимых, а принимая во внимание независимость 1) и 2), прийти к заключению о независимости этих же принципов, по крайней мере, в рассматриваемом случае. То обстоятельство, что принцип индивидуации в отмеченном выше смысле соответствует традиц. закону Т. (см. Тождества закон), представляет особый интерес с т. зр. проблемы "реализуемости" абстрактного Т. в природе, а значит. и онтологич. статуса абстракций вообще. Принцип Т. неразличимых в том его истолковании, к-рое дано выше - как принцип Т. в интервале абстракции, - выражает по существу философскую гносеологическую идею Т., основанного на понятии практики. Что же касается математики, где так или иначе оперируют с предикатом Т., с условием, что тождественное можно заменять тождественным (см. Правило замены равного равным), то здесь, принимая принцип индивидуации, т.е. полагая, что каждый матем. объект в универсуме рассуждения индивидуален, по видимости, легко можно уйти от решения гносеологич. проблемы Т., потому что в предложениях матем. теорий матем. объекты фигурируют не "сами по себе", а через своих представителей – обозначающие их символы. Отсюда возможность построений, существенно игнорирующих условие индивидуальности этих объектов; Так, известное построение взаимно-однозначного соответствия между совокупностью натуральных чисел и ее частью – совокупностью всех четных чисел (парадокс Галилея) игнорирует единственность каждого натурального числа, довольствуясь Т. его представителей: иначе как возможно указанное построение? Аналогичных построений в математике множество. Утверждению "предмет x тождествен предмету y" математик обычно приписывает следующий смысл: "символы x и у обозначают один и тот же предмет" или "символ x обозначает тот же предмет, к-рый обозначен символом у". Очевидно, что так понимаемое Т. относится скорее к языку соответствующих исчислений (вообще к формализованному языку) и выражает, по существу, случай языковой синонимии, а вовсе не философский гносеологич. смысл Т. Однако характерно, что даже и в этом случае не удается избежать относит. отождествления, основанного на применении принципа абстракции, поскольку синонимы возникают как результат абстракции отождествления по обозначению (см. Синонимы в логике). К тому же при интерпретации исчислений любое такое с е м а н т и ч е с к о е определение Т. как "отношения между выражениями языка" необходимо дополнять разъяснением того, чт? в этой семантич. формулировке Т. означают слова "один и тот же предмет". В связи с этим формулировка принципа Т., известная как лейбницевско-расселовская (см. Равенство в логике и математике), вряд ли соответствует филос. т. зр. самого Лейбница. Известно, что Лейбниц принимал принцип индивидуации: "Если бы два индивида были совершенно... не различимы сами по себе, то...в этом случае не было бы индивидуального различия или различных индивидов" ("Новые опыты о человеческом разуме", М.–Л., 1936, с. 202). Известно также, что любое нетривиальное употребление Т., соответствующее принципу Т. неразличимых, предполагает, что x и у – разные предметы, к-рые лишь относительно неразличимы, неразличимы в нек-ром интервале абстракции, определяемом либо разрешающей способностью наших средств различения, либо принимаемой нами абстракцией отождествления, либо, наконец, задаваемом самой природой. Но в формулировке Рассела наличие неогранич. квантора общности по предикатной переменной, придавая определению а б с о л ю т н ы й характер ("абсолютность" здесь следует понимать как антипод "относительности" в указ. выше смысле), навязывает идею абс. неразличимости x и у, противоречащую принципу индивидуации, хотя из определения Рассела выводима формула х=х, к-рая, как было отмечено выше, совместима и с принципом Т. неразличимых и с принципом индивидуации. В свете идеи Т. в интервале абстракции выясняется еще одна гносеологич. роль принципа абстракции: если в определении Т. предикат (хотя бы и произвольный) характеризует класс абстракции предмета х, и у – элемент этого класса, то тождественность x и у в силу принципа абстракции не предполагает, что x и у должны быть одним и тем же предметом в онтологич. смысле. С этой т. зр., два предмета универсума, принадлежащие к одному классу абстракции, рассматриваются как "один и тот же" предмет не в онтологическом, а в гносеологич. смысле: они тождественны только как абстрактные представители одного класса абстракции и только в этом смысле они неразличимы. В этом, собственно, и состоит диалектика понятия Т., а также ответ на вопрос: "Как могут быть тождественны разные предметы?". Лит.: Жегалкин И. И., Арифметизация символической логики, "Матем. сб.", 1929, т. 36, вып. 3–4; Яновская С. ?., О так называемых "определениях через абстракцию", в кн.: Сб. статей по философии математики, М., 1936; Лазарев Ф. В., Восхождение от абстрактного к конкретному, в кн.: Сб. работ аспирантов и студентов философского факультета МГУ, М., 1962; Вейль Г., Дополнения, в сб.: Прикладная комбинаторная математика, пер. с англ., М., 1968. М. Новоселов. Москва.


Эта статья дает начальное представление о тождествах . Здесь мы определим тождество, введем используемое обозначение, и, конечно же, приведем различные примеры тождеств.

Навигация по странице.

Что такое тождество?

Логично начать изложение материала с определения тождества . В учебнике Макарычева Ю. Н. алгебра для 7 классов определение тождества дается так:

Определение.

Тождество – это равенство, верное при любых значениях переменных; любое верное числовое равенство – это тоже тождество.

При этом автор сразу оговаривается, что в дальнейшем это определение будет уточнено. Это уточнение происходит в 8 классе, после знакомства с определением допустимых значений переменных и ОДЗ . Определение становится таким:

Определение.

Тождества – это верные числовые равенства, а также равенства, которые верны при всех допустимых значениях входящих в них переменных.

Так почему, определяя тождество, в 7 классе мы говорим про любые значения переменных, а в 8 классе начинаем говорить про значения переменных из их ОДЗ? До 8 класса работа ведется исключительно с целыми выражениями (в частности, с одночленами и многочленами), а они имеют смысл для любых значений входящих в них переменных. Поэтому в 7 классе мы и говорим, что тождество – это равенство, верное при любых значениях переменных. А в 8 классе появляются выражения, которые уже имеют смысл не для всех значений переменных, а только для значений из их ОДЗ. Поэтому тождествами мы начинаем называть равенства, верные при всех допустимых значениях переменных.

Итак, тождество – это частный случай равенства. То есть, любое тождество является равенством. Но не всякое равенство является тождеством, а только такое равенство, которое верно для любых значений переменных из их области допустимых значений.

Знак тождества

Известно, что в записи равенств используется знак равенства вида «=», слева и справа от которого стоят некоторые числа или выражения. Если к этому знаку добавить еще одну горизонтальную черту, то получится знак тождества «≡», или как его еще называют знак тождественного равенства .

Знак тождества обычно применяют лишь тогда, когда нужно особо подчеркнуть, что перед нами не просто равенство, а именно тождество. В остальных случаях записи тождеств по виду ничем не отличаются от равенств.

Примеры тождеств

Пришло время привести примеры тождеств . В этом нам поможет определение тождества, данное в первом пункте.

Числовые равенства 2=2 и являются примерами тождеств, так как эти равенства верные, а любое верное числовое равенство по определению является тождеством. Их можно записать как 2≡2 и .

Тождествами являются и числовые равенства вида 2+3=5 и 7−1=2·3 , так как эти равенства являются верными. То есть, 2+3≡5 и 7−1≡2·3 .

Переходим к примерам тождеств, содержащих в своей записи не только числа, но и переменные.

Рассмотрим равенство 3·(x+1)=3·x+3 . При любом значении переменной x записанное равенство является верным в силу распределительного свойства умножения относительно сложения, поэтому, исходное равенство является примером тождества. Вот еще один пример тождества: y·(x−1)≡(x−1)·x:x·y 2:y , здесь область допустимых значений переменных x и y составляют все пары (x, y) , где x и y - любые числа, кроме нуля.

А вот равенства x+1=x−1 и a+2·b=b+2·a не являются тождествами, так как существуют значения переменных, при которых эти равенства будут неверны. Например, при x=2 равенство x+1=x−1 обращается в неверное равенство 2+1=2−1 . Более того, равенство x+1=x−1 вообще не достигается ни при каких значениях переменной x . А равенство a+2·b=b+2·a обратится в неверное равенство, если взять любые различные значения переменных a и b . К примеру, при a=0 и b=1 мы придем к неверному равенству 0+2·1=1+2·0 . Равенство |x|=x , где |x| - переменной x , также не является тождеством, так как оно неверно для отрицательных значений x .

Примерами наиболее известных тождеств являются вида sin 2 α+cos 2 α=1 и a log a b =b .

В заключение этой статьи хочется отметить, что при изучении математики мы постоянно сталкиваемся с тождествами. Записи свойств действий с числами являются тождествами, например, a+b=b+a , 1·a=a , 0·a=0 и a+(−a)=0 . Также тождествами являются

Тождественность в математике - очень часто используемое понятие. Различают понятия тождественных равенств, тождественных выражений и тождественных преобразований, давайте более подробно разберём, что значит каждое из этих понятий.

Тождественные выражения в математике

Рассмотрим три простых алгебраических выражения:

  • $5x + 10$;
  • $(x + 2) \cdot 5$
  • $\frac{20x + 40}{4}$

Вне зависимости от используемых значений $x$, все три выражения между собой равны.

Для того чтобы доказать это, используем элементарные преобразования, разрешаемые в математике, и получим, что $5x + 10 = 5x + 10 = 5x + 10$, то есть все три выражения равны между собой. При упрощении становится очевидно, что вне зависимости от выбранного $x$ эти выражения всегда будут равны.

Мы подходим непосредственно к определению тождественных выражений:

Определение 1

Выражения называются тождественными друг с другом, если при любых значениях переменных они всегда равны между собой.

Например, можно сказать, что выражение $5x + 10$ тождественно выражениям $(x + 2) \cdot 5$ и $\frac{20x + 40}{4}$.

Стоит также обратить внимание на то, что не всегда выражения тождественны для всех возможных значений переменных, например, выражения $\frac{y^2-4}{y-2}$ и $y+2$ тождественны для любых $y$, кроме $y=2$.

При значении игрека, равному двум, первое из этих двух выражений теряет смысл, так как на нуль делить нельзя, а в знаменателе при этом значении получается нуль.

Данные выражения можно назвать тождественными при всех допустимых значениях переменной $y$, то есть эти выражения тождественны при всех $y$, при которых оба выражения не потеряют свой смысл. Такие выражения называются тождественными на заданном множестве значений.

Понятия «тождество» и «тождественное равенство»

Что же такое тождество в алгебре?

Определение 2

Тождество в математике - это равенство, которое всегда выполняется или, иными словами, является справедливым для всех множеств значений его переменных.

Если два и более тождественных выражения записать непосредственно рядом друг с другом через знак «равно» - то получится тождественное равенство, то есть тождество.

К тожественным равенствам относятся переместительный закон сложения $a+b =b + a$ и сочетательный закон умножения $(ab) \cdot c = a \cdot (bc)$, так как они являются верными вне зависимости от значения переменных $a, b, c$. Формулы для сокращённой записи разности квадратов, квадратов разности и квадратов суммы являются другими примерами тождественных равенств.

Иногда тождествами называются не только выражения, содержащие какие-либо переменные, но и все арифметически верные равенства типа $2+2=4$.

Не любое равенство, содержащее переменные, можно назвать тождеством. Например, равенство $y+5 = 7$ соблюдается только при $y= 2$, при каком-либо другом значении $y$ оно не соблюдается и поэтому тождеством его назвать нельзя.

Знак тождества в математике

Определение 3

Чаще всего тождества записывают через знак «равно» - «$=$», знак «тождественно» - «≡» иногда используют для особого выделения в речи тождественности какого-либо равенства. Обычно знак тождества используется значительно реже, чем знак равенства.

Тождественные преобразования

Очень часто для того чтобы упростить процесс вычисления каких-либо выражений, а также для их сравнения и более удобной подстановки переменных в равенства используют различные математические преобразования. Эти преобразования называются тождественными преобразованиями , так как они не изменяют конечные значения выражений и равенств.

Определение 4

Тождественные преобразования - это преобразования и замены одного выражения другим, тождественным ему, не изменяющие конечное значение выражений и не приводящие к нарушению тождественности равенств.

Любое выражение при любых допустимых значениях переменных, используемых в нём, принимает какое-либо значение. Из этого можно сделать вывод, что применение различных законов, соблюдающихся для арифметических действий приводит к преобразованию исходного выражение в новое, тождественное первоначальному выражению.

Пример 1

Какие выражения тождественны?

  1. $(10 + 3)$ и $13 \cdot (1 +5)$.
  2. $(x^2 + y^2)$ и $(x – y)(x+y)$.
  3. $8$ и $(2 \cdot 3 + 16 – 14)$.
  4. $7 + 4$ и $6 + 6$.

Ответ:

Тождественными являются выражения под номером 2 и 3, в случае выражений под номером 2 слева дана сокращённая формула разности квадратов, а справа - развёрнутая. В случае третьего выражения нужно упростить выражение справа:

$(2 \cdot 3 + 16 – 14)= 6 + 16 – 14 = 8$

Рассмотрим две равенства:

1. a 12 *a 3 = a 7 *a 8

Это равенство будет выполняться при любых значениях переменной а. Областью допустимых значений для того равенства будет все множество вещественных чисел.

2. a 12: a 3 = a 2 *a 7 .

Это неравенство будет выполняться для всех значений переменной а, кроме а равного нулю. Областью допустимых значений для этого неравенства будет все множество вещественных чисел, кроме нуля.

О каждом из этих равенств можно утверждать, что оно будет верно при любых допустимых значениях переменных а. Такие равенства в математике называются тождествами .

Понятие тождества

Тождество - это равенство, верное при любых допустимых значениях переменных. Если в данное равенство подставить вместо переменных любые допустимые значения, то должно получиться верное числовое равенство.

Стоит отметить, что верные числовые равенства тоже являются тождествами. Тождествами, например, будут являться свойства действий над числами.

3. a + b = b + a;

4. a + (b + c) = (a + b) + c;

6. a*(b*c) = (a*b)*c;

7. a*(b + c) = a*b + a*c;

11. a*(-1) = -a.

Если два выражения при любых допустимых переменных соответственно равны, то такие выражения называют тождественно равными . Ниже представлены несколько примеров тождественно равных выражений:

1. (a 2) 4 и a 8 ;

2. a*b*(-a^2*b) и -a 3 *b 2 ;

3. ((x 3 *x 8)/x) и x 10 .

Мы всегда можем заменить одно выражение любым другим выражением, тождественно равным первому. Такая замена будет являться тождественным преобразованием.

Примеры тождеств

Пример 1: являются ли тождествами следующие равенства:

1. a + 5 = 5 + a;

2. a*(-b) = -a*b;

3. 3*a*3*b = 9*a*b;

Не все представленные выше выражения будут являться тождествами. Из этих равенств тождествами являются лишь 1,2 и 3 равенства. Какие бы числа мы в них не подставили, вместо переменных а и b у нас все равно получатся верные числовые равенства.

А вот 4 равенство уже не является тождеством. Потому что не при всех допустимых значениях это равенство будет выполняться. Например, при значениях a = 5 и b = 2 получится следующий результат:

Данное равенство не верно, так как число 3 не равняется числу -3.

Обе части которого являются тождественно равными выражениями. Тождества делятся на буквенные и числовые.

Тождественные выражения

Два алгебраических выражения называются тождественными (или тождественно равными ), если при любых численных значениях букв они имеют одинаковую численную величину. Таковы, например, выражения:

x (5 + x ) и 5x + x 2

Оба представленных выражения, при любом значении x будут равны друг другу, поэтому их можно назвать тождественными или тождественно равными.

Так же тождественными можно назвать и числовые выражения, равные между собой. Например:

20 - 8 и 10 + 2

Буквенные и числовые тождества

Буквенное тождество - это равенство, которое справедливо при любых значениях входящих в него букв. Другими словами, такое равенство, у которого обе части являются тождественно равными выражениями, например:

(a + b )m = am + bm
(a + b ) 2 = a 2 + 2ab + b 2

Числовое тождество - это равенство, содержащее только числа, выраженные цифрами, у которого обе части имеют одинаковую численную величину. Например:

4 + 5 + 2 = 3 + 8
5 · (4 + 6) = 50

Тождественные преобразования выражений

Все алгебраические действия представляют собой преобразование одного алгебраического выражения в другое, тождественное первому.

При вычислении значения выражения, раскрытии скобок, вынесении общего множителя за скобки и в ряде других случаев одни выражения заменяются другими, тождественно равными им. Замену одного выражения другим, тождественно равным ему, называют тождественным преобразованием выражения или просто преобразованием выражения . Все преобразования выражений выполняются на основе свойств действий над числами.

Рассмотрим тождественное преобразование выражения на примере вынесения общего множителя за скобки:

10x - 7x + 3x = (10 - 7 + 3)x = 6x



Что еще почитать