Полимерной промышленности является переработка этих. Что такое полимерные отходы, их переработка и утилизация. Переработка полистирола, бывшего в употреблении

ВВЕДЕНИЕ

На основе поливинилхлорида (ПВХ) получают более 3000 видов композиционных материалов и изделий, используемых в электротехнической, лёгкой, пищевой, автомобильной промышленности, машиностроении, судостроении, при производстве стройматериалов, медицинского оборудования и т.д., что обусловлено его уникальными физико-механическими, диэлектрическими и другими эксплуатационными свойствами.

Однако в настоящее время применение ПВХ постепенно ограничивается, что связано, прежде всего, с экологическими проблемами, возникающими при эксплуатации изделий, их утилизации и вторичной переработке. При старении полимеров на основе ПВХ наряду с потерей физико-механических свойств наблюдается негативное воздействие на окружающую среду и человека, обусловленное процессами дегидрохлорирования ПВХ, усиливающимися при температуре 50 -- 80 °С (образуются высокотоксичные хлорсодержащие полиароматические соединения).

УТИЛИЗАЦИЯ ВТОРИЧНОГО ПОЛИМЕРНОГО СЫРЬЯ

В настоящее время существуют следующие пути полезного использования вторичного полимерного сырья:

Сжигание с целью получения энергии;

Термическое разложение (пиролиз, деструкция, разложение до исходных мономеров и др.);

Повторное использование;

Вторичная переработка.

Сжигание отходов в мусоросжигательных печах не является рентабельным способом утилизации, поскольку предполагает предварительную сортировку мусора. При сжигании происходит безвозвратная потеря ценного химического сырья и загрязнение окружающей среды вредными веществами дымовых газов.

Значительное место в утилизации вторичного полимерного сырья уделяется термическому разложению как способу преобразования ВПС в низкомолекулярные соединения. Важное место среди них принадлежит пиролизу. Пиролиз - это термическое разложение органических веществ с целью получения полезных продуктов. При более низких температурах (до 600°С) образуются в основном жидкие продукты, а выше 600°С - газообразные, вплоть до технического углерода.

Пиролиз ПВХ с добавлением отходов ПЭ, ПП и ПС при Т=350°С и давлении до 30 атм в присутствии катализатора Фриделя-Крафтса и при обработке смеси водородом позволяет получать много ценных химических продуктов с выходом до 45%, таких, как бензол, толуол, пропан, кумол, альфа-метилстирол и др., а также хлористый водород, метан, этан, пропан. Несмотря на ряд недостатков, пиролиз, в отличие от процессов сжигания ГБО, дает возможность получения промышленных продуктов, используемых для дальнейшей переработки.

Еще одним способом трансформации вторичного полимерного сырья является каталитический термолиз , который предусматривает применение более низких температур. В некоторых случаях щадящие режимы позволяют получать мономеры, например, при термолизе ПЭТФ, ПС и др. Получаемые мономеры могут быть использованы в качестве сырья при проведение процессов полимеризации и поликонденсации. В США из использованных ПЭТФ-бутылок получают дефицитные мономеры - диметилтерефталат и этиленгликоль, которые вновь используются для синтеза ПЭТФ заданной молекулярной массы и структуры, необходимой для производства бутылок.

Наиболее предпочтительными способами утилизации вторичного полимерного сырья с экономической и экологической точек зрения представляется повторное использование и вторичная переработка в новые виды материалов и изделий.

Повторное применение предполагает возвращение в производственный цикл использованной упаковки после ее сбора и соответствующей обработки (мойки, сушки и др. операций), а также получения разрешения санитарных органов на ее повторное применение при непосредственном контакте с пищевыми продуктами. Этот путь пригоден, главным образом, для бутылочной тары из ПЭТФ.

Вторичная переработка отходов получила широкое распространение во многих странах мира. Этим путем смешанные отходы из полимерных материалов могут перерабатываться в изделия различного назначения (строительные панели, декоративные материалы и т.п.). В США, где особенно велико использование полиэтилентерефталатной тары, принята и реализуется национальная программа, в соответствии с которой к началу XXI столетия уровень вторичной переработки бутылок из ПЭТФ будет доведен до 25-30% (по сравнению с 9-10% в начале девяностых годов). Программа предусматривает выполнение четырех этапов: -организация сбора использованной тары у населения; - сортировка собранного сырья;

Переработка (предварительная и окончательная) в изделия народнохозяйственного назначения;

Сбыт получаемых изделий.

Программа предусматривает также создание пунктов сбора по всей стране с привлечением до 50% всего населения, координационных центров, налаживание различных связей, рекламу, публикацию сведений по сбору отходов, создание банка данных, обучение населения, создание "горячих" линий (до 800) для передачи своевременной информации и др. мероприятия. Одним из перспективных направлений в этой области является производство гранулята из отсортированного сырья с использованием различных добавок, повышающих его качество (стабилизаторов, красителей, модификаторов и др.), идущего на переработку в изделия различными способами переработки.

В основе вторичной переработки отходов, например, в Германии лежит "Дуальная система", включающая сортировку и переработку отдельных видов вторичного сырья на предприятиях-производителях материалов и упаковки из них. Для облегчения сбора отходов и направления их на переработку создана система, предусматривающая прием использованной упаковки и ее направление на вторичную переработку при наличии экологической маркировки "Зеленая точка" (Der Grune Punkt). Этот знак обозначает, что данная упаковка подлежит вторичной переработке или повторному использованию, и присваивается упаковкам, прошедшим специальный конкурс, что является основным принципом "Дуальной системы". Обычно для эффективной переработки ВПС его подвергают модификации. Существуют следующие методы модификации ВПС: - химические (сшивание пероксидами, например, пероксидом дикумила, малеиновым ангидридом, кремнийорганическими жидкостями и др.);

Физико-химические (введение различных добавок органической природы, например, технических лигнинов, сажи, термоэластопластов, восков и др.), создание композиционных материалов;

Физические (введение неорганических наполнителей: мела, оксидов, графита и др.) и технологические (варьирование режимов переработки). Введение полиорганосилоксанов совместно с инициирующими добавками и последующей гомогенизацией перерабатываемого сырья позволяет регенерировать сильно изношенные материалы и восстанавливать требуемый уровень их технологических свойств. В зависимости от используемой среды и режима обработки происходит образование привитых сополимеров или пространственно-структурированных систем с образованием поперечных силоксановых связей. Их высокая прочность и низкая плотность молекулярной упаковки в полисилоксанах обеспечивает эластичность материала при одновременном улучшении механических свойств, термостабильности, атмосферо- и химстойкости.

Механические характеристики вторичного ПА из изношенных изделий можно существенно улучшить путем термической обработки сырья различными средами-теплоносителями (вода, минеральное масло и др.) с одновременным ИК-облучением. Термообработка в среде теплоносителя осуществляется по принципу отжига и включает операции нагрева, выдержки и охлаждения. При этом уровень физико-механических показателей определяется видом теплоносителя, режимом термообработки и временем сушки, которое может составлять от 1,5 до 2,5 часов. В основе большинства предлагаемых способов лежит радикальноцепной механизм взаимодействия между активными группами вводимой добавки или наполнителя и окисленными фрагментами базового полимера. Среди всех имеющихся методов наибольший практический интерес представляет композиционные материалы из вторичного полимерного сырья. Одной из функциональных модифицирующих добавок может служить природный полимер - лигнин, являющийся отходом целлюлозно-бумажной и гидролизной переработки древесины. Он представляет собой продукт метаболизма древесины и других растений, накапливаемых в процессе лигнификации в срединной пластинке и клеточной стенке, составляя 30% всей ее массы (остальные 70% приходятся на целлюлозу и гемицеллюлозу).

По своей химической природе лигнин относится к полифункциональным фенолам, основному классу стабилизаторов полимеров, и оказывает достаточно эффективное свето- и термостабилизирующее воздействие на окисляемые и окисленные полимеры. Технология получения из него микронизированного продукта с применением электромагнитного измельчения разработана в МГУПБ.

Помимо эффективного модификатора вторичного полимерного сырья гидролизный лигнин после соответствующей обработки и подготовки в виде гидролизной муки (микролигнина) может быть использован для получения таких ценных в технологии переработки пластмасс продуктов, как ароматические стабилизаторы, антиоксиданты, структурообразователи и модифицирующие добавки для термопластов, наполнители - для реактопластов, сорбенты медицинского назначения типа "ЭКОЛИС" для выведения из организма токсинов, тяжелых металлов и др. вредных для живого организма веществ, в качестве лекарственного препарата при лечении цирроза печени (исследовалось на кроликах), для получения ванилина и др. целей. В ряде европейских стран проблема утилизации использованных пластмассовых упаковок неразрывно связана с налаживанием четкой службы их сбора, сортировки и разделения смешанных отходов, поскольку эти операции являются самыми трудоемкими.

В странах ЕС вопросы утилизации отходов упаковки решаются в рамках единого для этих стран закона, направленного на предупреждение нарастания объемов полимерной упаковки и тары, рациональных способов их утилизации, главным образом вторичной переработкой, организацией рациональной системы сбора и т.д.

Работы в области утилизации вторичного полимерного сырья были начаты в России в конце 70-х - начале 80-х годов.

Вторичная переработка поливинилхлорида

В процессе переработки полимеры подвергаются воздействию высоких температур, сдвиговых напряжений и окислению, что приводит к изменению структуры материала, его технологических и эксплуатационных свойств. На изменение структуры материала решающее влияние оказывают термические и термоокислительные процессы.

ПВХ - один из наименее стабильных карбоцепных промышленных полимеров. Реакция деструкции ПВХ - дегидрохлорирование начинается уже при температурах выше 100 °С, а при 160 °С реакция протекает очень быстро. В результате термоокисления ПВХ происходят агрегативные и дезагрегативные процессы - сшивание и деструкция.

Деструкция ПВХ сопровождается изменением начальной окраски полимера из-за образования хромофорных группировок и существенным ухудшением физико-механических, диэлектрических и других эксплуатационных характеристик. В результате сшивания происходит превращение линейных макромолекул в разветвленные и, в конечном счете, в сшитые трехмерные структуры; при этом значительно ухудшаются растворимость полимера и его способность к переработке. В случае пластифицированного ПВХ сшивание уменьшает совместимость пластификатора с полимером, увеличивает миграцию пластификатора и необратимо ухудшает эксплуатационные свойства материалов.

Наряду с учетом влияния условий эксплуатации и кратности переработки вторичных полимерных материалов, необходимо оценить рациональное соотношение отходов и свежего сырья в композиции, предназначенной к переработке.

При экструзии изделий из смешанного сырья существует опасность брака из-за разной вязкости расплавов, поэтому предлагается экструдировать первичный и вторичный ПВХ на разных машинах, однако порошкообразный ПВХ практически всегда можно смешивать с вторичным полимером .

Важной характеристикой, определяющей принципиальную возможность вторичной переработки ПВХ отходов (допустимое время переработки, срок службы вторичного материала или изделия), а также необходимость дополнительного усиления стабилизирующей группы, является время термостабильности.

Методы подготовки отходов поливинилхлорида

Однородные производственные отходы, как правило, подвергаются вторичной переработке, причем в случаях, когда глубокому старению подвергаются лишь тонкие слои материала.

В некоторых случаях рекомендуется использовать абразивный инструмент для снятия деструктированного слоя с последующей переработкой материала в изделия, которые не уступают по свойствам изделиям, полученным из исходных материалов.

Для отделения полимера от металла (провода, кабели) используют пневматический способ. Обычно выделенный пластифицированный ПВХ может использоваться в качестве изоляции для проводов с низким напряжением или для изготовления изделий методом литья под давлением. Для удаления металлических и минеральных включений может быть использован опыт мукомольной промышленности, основанный на применении индукционного способа, метод разделения по магнитным свойствам. Для отделения алюминиевой фольги от термопласта используют нагрев в воде при 95…100 °С.

Предлагается негодные контейнеры с этикетками погружать в жидкий азот или кислород с температурой не выше -50 °С для придания этикеткам или адгезиву хрупкости, что позволит затем их легко измельчить и отделить однородный материал, например бумагу.

Энергетически экономичен способ сухой подготовки пластмассовых отходов с помощью компактора. Способ рекомендуется для переработки отходов искусственных кож (ИК), линолеумов из ПВХ и включает ряд технологических операций: измельчение, сепарацию текстильных волокон, пластикацию, гомогенизацию, уплотнение и грануляцию; можно также вводить добавки. Подкладочные волокна отделяются трижды - после первого ножевого дробления, после уплотнения и вторичного ножевого дробления. Получают формовочную массу, которую можно перерабатывать литьем под давлением, содержащую еще волокнистые компоненты, которые не мешают переработке, а служат наполнителем, усиливающим материал.

В составе Группы CREON

Рециклинг полимеров, столь развитый в европейских странах, в России пока находится в зачаточном состоянии: раздельный сбор отходов не налажен, нормативная база отсутствует, инфраструктуры нет, как нет и сознательности среди большей части населения. Однако игроки рынка смотрят в будущее с оптимизмом, возлагая надежды в том числе на Год экологии, который объявлен в стране в 2017 г. указом Президента.

Третья международная конференция «Вторичная переработка полимеров 2017», организованная компанией INVENTRA, состоялась в Москве 17 февраля. Партнерами мероприятия выступили Polymetrix, Uhde Inventa-Fischer, Starlinger Viscotec, MAAG Automatik, Erema и Moretto; поддержку оказали Nordson, DAK Americas и PETplanet. Информационный спонсор конференции – журнал «Полимерные материалы».

«Сейчас ситуация не вдохновляет, но ее улучшение – дело времени, - отметил в приветственном слове управляющий директор Группы CREON Сергей Столяров. – При высоких ценах на первичное сырье спрос на переработанные полимеры и изделия из них будет расти. В то же время появление отечественного сырья сместит структуру потребления первичного ПЭТФ в сторону волокон и пленок. В этой связи использование вторичных полимеров становится особенно перспективно».

По итогам 2016 г. объем мирового сбора ПЭТФ для вторичной переработки составил 11.2 млн т, сообщила консультант PCI Wood Mackenzie Хелен МакГиу. Основная доля пришлась на страны Азии - 55%, в Западной Европе собрано 17% от мирового объема, в США - 13%. По прогнозу эксперта, к 2020 г. сборы ПЭТФ для рециклинга превысят 14 млн т, а в процентном выражении уровень сбора достигнет 56% (сейчас 53%). Основной рост ожидается за счет азиатских стран, в частности, Китая.

На данный момент наибольший уровень сбора наблюдается в Китае, он составляет 80%, примерно такого же показателя достигли и другие азиатские страны. По словам г-жи МакГиу, из собранного в 2016 г. ПЭТФ (а это, напомним, 11.2 млн т) производственные потери составили 2.1 млн т, соответственно, хлопьев было получено 9.1 млн т. Основное направление дальнейшей переработки – волокна и нити (66%).

К 2025 г. в Европе будет перерабатываться 60% бытовых отходов, в 2030 г. этот показатель вырастет до 65%. Такие поправки планируются в Рамочную директиву по отходам, сообщил Каспарс Фогельманис, председатель Совета директоров Nordic Plast. Сейчас уровень рециклинга гораздо ниже - в Латвии, например, он составляет всего 21%, в среднем в Европе – 44%. При этом объемы производимой в Прибалтике пластмассовой упаковки ежегодно растут, наиболее распространенные перерабатываемые полимеры - пленка ПЭНП, ПЭВП и ПП.

В России по итогам 2016 г. потребление вторичного ПЭТФ (reПЭТФ) составило около 177 тыс. т, из них на внутренний сбор пришлось 90%. Как сообщил Константин Рзаев, председатель Совета директоров ГК «ЭкоТехнологии», почти 100% импорта пришлось на ПЭТ-хлопья для производства полиэфирного волокна. Крупнейшие страны-поставщики - это Украина (более 60%), а также Казахстан, Белоруссия, Азербайджан, Литва и Таджикистан.

Константин Рзаев отметил, что в прошлом году уровень сбора впервые превысил 25%, и это позволяет говорить о появлении в России полноценной отрасли, уже представляющей интерес для инвестиций. Сегодня главным потребителем (62% всего объема) и драйвером цены по-прежнему является сегмент вторичного ПЭТ-волокна. Но изменения в законодательстве и тренд к приоритетному использованию вторичных материалов в рамках стратегий Устойчивого Развития транснациональных компаний-производителей ТНП обеспечивают благоприятную почву для развития другого ключевого сегмента потребления reПЭТФ - bottle-to-bottle.

За прошедший год не появилось новых крупных производств, потребляющих reПЭТФ, однако постепенно растет его использование в сегменте «лист». Однако уже в 2017 г. ожидается открытие новых производств вторичного ПЭТ-волокна и расширение существующих, что вместе с курсом рубля будет основным фактором влияния на баланс рынка и цены на reПЭТФ.

Однако есть немало других направлений - пока неразвитых, но достаточно перспективных, где рециклированный ПЭТФ тоже востребован. Как рассказал почетный президент АРПЭТ Виктор Керницкий, это нити для мебельных тканей, обивки автомобилей и различных видов геосинтетики, вспененные материалы для тепло- и звукоизоляции, сорбционные материалы для очистки сточных вод, а также волокна, армирующие битум, для дорожного строительства. По словам эксперта, существует множество новых технологий переработки и сфер применения, и целью государственной политики должно быть не ограничение применения ПЭТФ, а сбор и рациональное использов ание его отходов.

Тему продолжила Любовь Меланевская, исполнительный директор ассоциации «РусПЭК», которая рассказала о первых итогах введения в России расширенной ответственности производителей (РОП). Она вступила в действие в 2016 г., ее цель - создать постоянный, платежеспособный и растущий спрос на переработку отходов продукции и упаковки. По прошествии года уже можно сделать некоторые выводы, основной из которых - существует ряд проблем, из-за которых механизм по реализации РОП зачастую попросту не работает. Как рассказала на конференции г-жа Меланевская, налицо необходимость изменения и дополнения существующего регулирования. В частности, при декларировании товаров, включая упаковку, производители столкнулись с несовпадением кодов упаковки товаров с кодами, указанными в принятых нормативных актах, вследствие чего многие производители и импортеры не смогли подать декларации, т.к. не нашли себя в регулировании. Решением стал отказ от кодов и предложение перейти на идентификацию упаковки по материалам.

В дальнейшем, считает «РусПЭК», необходимо принятие единой сквозной терминологии для всех элементов РОП и определение однозначных, понятных и прозрачных условий для заключения контрактов с операторами по обращению с отходами. В целом же ассоциация поддерживает закон о РОП как нужный и позитивный для отрасли.

При внедрении и популяризации в стране рециклинга ПЭТФ огромное значение имеет и наличие современных технологий (как правило, их предоставляют иностранные компании). Так, Polymetrix предлагает современные комплексные решения по вторичной переработке ПЭТФ, включая собственную технологию SSP, для рециклинга ПЭТ-бутылок в пищевой бутылочный полиэтилентерефталат. Сейчас в мире работает 21 такая линия, рассказал Данил Поляков, региональный менеджер по продажам. Технология ориентирована на рынок премиум-класса и предполагает переработку бутылок в гранулы для пищевых контейнеров. Первым этапом является мойка, где происходит полное удаление волокон бумаги и поверхностных загрязнений, а также этикеток и клея. Далее бутылки измельчаются в хлопья, которые сортируются по морфологии и по цвету. Затем происходит получение гранул и далее – конечная полная очистка и восстановление характеристик полимера на стадии SSP.

Viscotec предлагает своим потребителям технологию переработки ПЭТ-бутылок в листы, говорит представитель компании Герхард Осбергер. Так, реакторы твердофазной поликонденсации viscoSTAR и deCON предназначены для очищения и повышения вязкости ПЭТ-гранул и хлопьев. Их используют после гранулятора, перед производственным экструзионным оборудованием или как самостоятельную установку. Линия ViscoSHEET способна производить ленту, изготовленную на 100% из вторичного ПЭТФ и полностью пригодную для использования с пищевыми продуктами.

Представитель компании Erema Кристоф Вьосс рассказал о поточном производстве пищевых пластиковых бутылок из ПЭТ-хлопьев. Система VACUREMA® инлайн дает возможность перерабатывать флексы напрямую в готовый термоформовочный лист, бутылочную преформу, в готовую упаковочную ленту или мононить.

Подводя итоги конференции, ее участники определили основные факторы, сдерживающие развитие рециклинга полимеров в России. Главным из них они назвали отсутствие регулирующих нормативных документов:

«Тем не менее, есть еще один фактор, который мы не можем не учитывать, - это общественное сознание, - рассуждает директор конференции Рафаэль Григорян. – К сожалению, наш менталитет сегодня таков, что раздельный сбор отходов воспринимается скорее как баловство, нежели как норма. И какие бы подвижки мы ни наблюдали в других сферах, необходимо прежде всего менять мышление наших сограждан. Без этого даже самая современная инфраструктура окажется бесполезной».

Вторичное использование полимеров — отрасль промышленности, развитая в нашей стране крайне плохо. Традиционным и самым распространенным для России способом утилизации полимерного мусора является его захоронение и складирование на свалках. В то время как в развитых странах вовсю работают перерабатывающие заводы, мы утопаем в собственных отходах.

Полимерные отходы представляют собой разные виды отслуживших изделий и материалов, изготовленных из синтетических полимеров. Производством последних занимаются на промышленных предприятиях, при этом из простых веществ (мономеров) посредством проведения реакций полимеризации и поликонденсации получают различные полимерные (высокомолекулярные) продукты.

Безусловно, продукция из полимеров имеет массу преимуществ, связанных со свойствами материала и экономической целесообразностью его использования. Однако синтетические высокомолекулярные соединения крайне сложно поддаются биологическому разложению, что негативно сказывается на экологии.

Отходы полимеров в огромном количестве образуются при изготовлении пластиков и изделий из них. К промышленному полимерному мусору относятся, например, части пластмассовых труб, остатки, остающиеся при производстве пластиковых (ПВХ) окон и т.д.

Большую долю составляют бытовые полимерные отходы. Эта обширная группа состоит из:

  • пластиковых бутылок;
  • упаковок из полиэтилена;
  • полимерной пленки;
  • корпусов разных видов техники (бытовой, садовой и т.п.);
  • ящиков из пластмассы и других пластиковых емкостей;
  • оконных профилей и т.д.

Доля бытовых полимерных отходов от всего объема данного вида мусора составляет свыше 60%.

Утилизация

Утилизация полимеров включает различные способы, отличающиеся не только технологическим процессом, но и степенью экологической безопасности и рентабельностью. Перечислим основные методы.

Захоронение. До сих пор этот способ утилизации отходов наиболее популярный. Предполагает использование больших земельных площадей. Пластиковый мусор не поддается биодеструкции, из-за этого территорий, отведенных под захоронение, требуется все больше. Реализация данного способа крайне негативно сказывается на состоянии экологии.

Сжигание. Не требует проведения сортировки сырья и не задействует огромные территории. Однако в процессе сжигания полимеров в атмосферу выделяются токсичные газы, которые вносят свой весомый «вклад» в образование парникового эффекта и формирование озоновых дыр. Для минимизации подобных явлений можно внедрять дорогие виды оборудования по очистке продуктов горения, но в таком случае утилизация методом сжигания, скорее всего, будет невыгодной.

Пиролиз. Процесс разложения полимерных соединений осуществляется в условиях высокой температуры и недостатка кислорода. Результатом пиролиза пластика являются газообразные, жидкие и твердые продукты. Первые используются, например, для отопления. Образующиеся жидкие компоненты могут применяться при получении теплоносителей, твердые – на предприятиях, производящих защитные смазки, эмульсии, пропиточные составы и пр.

Пиролиз полимерных материалов обеспечивает получение топлива и сырья для разных сфер производства. Для получения более подробной информации рекомендуем прочитать развернутую статью на тему .

Расщепление полимеров для получения продуктов с меньшей молекулярной массой. Процесс разложения полимерных молекул осуществляется при высоких значениях температуры и давления, а также в присутствии различных соединений: воды и катализаторов (гидролиз), гликолей, метилового спирта (метанолиз) и др.

Вторичная переработка полимеров. Наиболее современный и рациональный способ, реализуемый в ряде развитых государств. Технология и переработка полимерных отходов подразумевает применение разных способов.

Интересный факт! Выгода от переработки пластикового мусора очевидна. Пример: цена 1 тонны спрессованных ПЭТ-бутылок – 100$, очищенных и измельченных – 300$, пластиковых гранул – 1000$, нитей, используемых текстильной промышленностью, – 2500$/т.

Переработка

Работа большинства заводов по переработке полимерных отходов основана на одном принципе. Рассмотрим этапы процесса подробнее.

Обратите внимание! Для подходят не все виды полимеров. На предприятиях производят переработку термопластичных синтетических материалов, среди которых наиболее распространены полиэтилен, ПП, ПВХ, ПС и АБС-пластик.

Технология переработки

На пути получения из полимерных отходов сырья для разных областей производства осуществляют:

  1. Предварительную . Полимеры подвергаются грубому разделению по типу пластика, его цвету, форме и размерам. Обычно этот этап переработки производят вручную. Из полимерной массы удаляют инородные компоненты.
  2. Измельчение. Крайне важная стадия. Степенью измельчения определяются характеристики получаемой продукции. Ножевые дробилки измельчают полимеры в рыхлую массу с размерами частиц 0,2-0,9 см. Инновационным является криогенный способ измельчения, который обеспечивает получение полимерной крошки диаметром всего 0,05 – 0,2 см.
  3. Разделение смеси полимеров. Здесь используют разные способы, наиболее популярным из которых является флотация: в воду с пластиковой смесью добавляют ПАВ, обеспечивающие изменение гидрофильных свойств полимерных материалов.
  4. Мойку и сушку. Отмывается измельченная масса специальными моющими средствами в промышленных моечных машинах. С помощью центрифуги производят первичное высушивание сырья, доводя его влажность до 10-15%. Окончательная сушка (до 0,2% влаги) осуществляется в сушильной установке.
  5. Грануляцию. Подготовленное сырье в грануляторе уплотняется, что облегчает последующую переработку материала и обеспечивает усреднение его характеристик. Конечный продукт – гранулы, пригодные для производства новых изделий и материалов.

Оборудование

Комплекс оборудования для переработки полимеров (в гранулы) состоит из:

  • линии мойки;
  • дробилок;
  • экструдеров;
  • ленточных конвейеров;
  • шредеров;
  • агломераторов и грануляторов;
  • смесителей и дозаторов.

Все эти виды оборудования можно приобрести по отдельности. Также возможна покупка полной линии по переработке полимерных отходов в гранулы.

Дополнительная информация! В Республике Татарстан сегодня функционирует «Зеленодольский завод – ЭРА», перерабатывающий полимеры в материалы для производства детских игрушек и мебели.

Куда сдать на переработку

Прием полимеров осуществляется в специальных пунктах, которые есть во всех крупных городах. Также чтобы сдать пластиковые отходы, можно напрямую обратиться в специализированные компании (их адреса легко найти в Интернете). «Поставщиками» полимеров могут быть как физические лица, так и организации, причем за сдачу вторсырья возможно получить неплохую сумму денег. Помимо прочего, в нашей стране начинает практиковаться раздельный сбор мусора, подразумевающий, что изделия из пластика должны выбрасываться в специальный контейнер с соответствующей пометкой.

О том, как осуществляется процесс получения из пластиковых отходов гранул на одном из предприятий, и о важности переработки полимерных материалов рассказывают в этом видео.

Переработка полимеров не «заезженная тема» в нашей стране. Это свободная ниша бизнеса, открытие которого не только положительно скажется на состоянии экологии, но и принесет свою прибыль бизнесмену. Переработка пластика считается рентабельным делом, однако для его успешного запуска необходима государственная поддержка.


Классификация отходов

Отходы образуются при переработке полимеров и изготовлении из них изделий - это технологические отходы, частично возвращаемые в процесс. То, что остается после использования пластиковых изделий - различных пленок (парниковых, строительных и т.п.), тары, бытовой и крупнооптовой упаковки - это бытовые и промышленные отходы.

Технологические отходы, подвергаются термическому воздействию в расплаве, а затем при дроблении и агломерации - еще и интенсивным механическим воздействиям. В массе полимера интенсивно протекают процессы термо- и механодеструкции с потерей ряда физико-механических свойств и при многократной переработке могут отрицательно влиять на свойства изделия. Так, при возврате в основной процесс, как обычно, 10-30 процентов вторичных отходов, заметное количество материала проходит до 5 циклов экструзии и дробления.

Бытовые и промышленные отходы не только перерабатываются несколько раз при высокой температуре, но также подвергаются и длительному воздействию прямого солнечного света, кислорода и влаги воздуха. Парниковые пленки могут также контактировать с ядохимикатами, пестицидами, ионами железа, способствующими деструкции полимера. В результате в массе полимера накапливается большое количество активных соединений, ускоряющих распад полимерных цепей. Подход к вторичной переработке таких разных отходов соответственно и должен быть разным, учитывающим предысторию полимера. Но сначала рассмотрим пути снижения объемов образующихся отходов.

Снижение количества технологических отходов

Количество технологических отходов, в первую очередь пусковых, можно снизить, применяя термостабилизаторы перед остановкой экструдера или литьевого агрегата, в виде так называемого стоп-концентрата, о чем многие забывают или пренебрегают. При остановках оборудования на простой материал в цилиндре экструдера или ТПА довольно долгое время находится под действием высокой температуры при остывании и затем нагреве цилиндра. За это время в цилиндре активно протекают процессы сшивки, разложения и пригара полимера, накапливаются продукты, которые после пуска длительное время выходят в виде геликов и окрашенных включений (пригарков). Термостабилизаторы предотвращают эти процессы, облегчая и ускоряя тем самым чистку оборудования после запуска. Для этого перед остановкой в цилиндр машины вводится 1-2 процента стоп-концентрата за 15-45 мин. до остановки из расчета вытеснения 5-7 объемов цилиндра.

Снизить количество отходов позволяют также процессинговые (экструзионные) добавки, повышающие технологичность процесса. По своей природе эти добавки, например, «Дайнамар» фирмы «Дайнеон», «Вайтон» фирмы «Дюпон», являются производными фторкаучуков. Они плохо совместимы с основными полимерами и в местах наибольших усилий сдвига (фильеры, литники и т.п.) высаживаются из расплава на поверхность металла, создавая на ней пристенный смазывающий слой, по которому скользит расплав при формовании. Применение процессинговой добавки в самых малых количествах (400-600 ppm) позволяет решить многочисленные технологические проблемы - снизить крутящий момент и давление на головке экструдера, повысить производительность при снижении энергозатрат, устранить дефекты внешнего вида и снизить температуру экструзии полимеров и композиций, чувствительных к воздействию повышенных температур, увеличить гладкость изделий, производить более тонкие пленки. При изготовлении крупногабаритных или тонкостенных литьевых изделий сложной формы, применение добавки позволяет улучшить проливаемость, убрать дефекты поверхности, линии спая и улучшить внешний вид изделия. Всё это само по себе снижает долю брака, т.е. количество отходов. К тому же процессинговая добавка снижает налипание нагара на фильере, обрастание литников, обладает моющим эффектом, т.е. снижает число остановок для чистки оборудования, а значит, количество пусковых отходов.

Дополнительный эффект приносит использование чистящих концентратов. Они применяются при чистке литьевого и пленочного оборудования для быстрого перехода с цвета на цвет без остановки, чаще всего в пропорции 1:1-1:3 с полимером. При этом сокращается количество отходов и затраты времени на смену цвета. В состав чистящих концентратов, производимых многими отечественными (в т.ч. «Клинол», «Клинстайр» от НПФ «Барс-2», «Ластик» от ООО «Сталкер») и зарубежными изготовителями (например, «Шульман» - «Поликлин»), входят, как правило, мягкие минеральные наполнители и поверхностно-активные моющие добавки.

Снижение количества бытовых и промышленных отходов.

Существуют различные пути снижения количества отходов путем увеличения срока работы изделий, прежде всего пленок, за счет использования термо- и светостабилизирующих добавок. При продлении срока службы парниковой пленки с 1 до 3-х сезонов соответственно снижается и количество отходов, подлежащих утилизации. Для этого достаточно ввести в пленку небольшие количества светостабилизаторов, не более половины процента. Затраты на стабилизацию невелики, а эффект при утилизации пленок - значителен.

Обратный путь - ускорение разложения полимеров путем создания фото- и биоразрушаемых материалов, быстро разрушающихся после использования под действием солнечных лучей и микроорганизмов. Для получения фоторазрушаемых пленок в полимерную цепочку вводятся сомономеры с функциональными группами, способствующими фотодеструкции (винилкетоны, оксид углерода), либо в состав полимера вводятся фотокатализаторы, как активные наполнители, способствующие разрыву полимерной цепи под действием солнечного света. В качестве катализаторов используются дитиокарбаматы, пероксиды или оксиды переходных металлов (железа, никеля, кобальта, меди). В Институте химии воды НАН Украины (В.Н.Мищенко) разработаны экспериментальные методы формирования на поверхности частиц диоксида титана наноразмерных кластерных структур, содержащих частицы металла и оксида. Скорость разложения пленок повышается в 10 раз - со 100 до 8-10 часов.

Основные направления получения биоразлагаемых полимеров:
синтез полиэфиров на основе гидроксикарбоновых (молочной, масляной) или дикарбоновых кислот, однако пока они намного дороже традиционных пластмасс;
пластмассы на основе воспроизводимых природных полимеров (крахмал, целлюлоза, хитозан, протеин), сырьевая база таких полимеров, можно сказать, не ограничена, но технология и свойства получаемых полимеров пока не достигают уровня основных многотоннажных полимеров;
придание биоразлагаемости промышленным полимерам (полиолефинам в первую очередь, а также ПЭТу) путем компаундирования.

Первые два направления требуют больших капитальных затрат на создание новых производств, переработка таких полимеров также потребует значительных изменений в технологии. Наиболее простой путь - компаундирование. Биоразлагаемые полимеры получают, вводя в матрицу биологически активные наполнители (крахмал, целлюлозу, древесную муку). Так, еще в 80-х В.И.Скрипачев и В.И.Кузнецов из ОНПО «Пластполимер» разработали крахмалонаполненных пленки с ускоренным сроком старения. К сожалению, актуальность такого материала тогда была чисто теоретической, да и сейчас широкого распространения он не получил.

Вторичная переработка отходов

Придать полимеру вторую жизнь можно с помощью специальных комплексных концентратов - рециклизаторов. Поскольку полимер подвергается термодеструкции на каждой стадии переработки, фотоокислительной деструкции во время эксплуатации изделия, механодеструкции при измельчении и агломерации отходов, в массе материала накапливаются продукты деструкции, и содержится большое количество активных радикалов, перекисных и карбонильных соединений, способствующих дальнейшему разложению и сшивке полимерных цепей. Поэтому в состав таких концентратов входят первичные и вторичные антиоксиданты, термо- и светостабилизаторы фенольного и аминного типа, а также фосфиты или фосфониты, нейтрализующие активные радикалы, накопившиеся в полимере и разлагающие перекисные соединения, а также пластифицирующие и совмещающие добавки, позволяющие улучшить физико-механические свойства вторичного материала и подтянуть их более или менее близко к уровню первичного полимера.

Комплексные добавки фирмы «Сиба». Фирма «Сиба», Швейцария, предлагает семейство комплексных стабилизаторов для переработки различных полимеров - ПВД, ПНД, ПП: «Рециклостаб» / Recyclostab и «Рециклосорб» / Recyclossorb. Они представляют собой таблетированные смеси различных фото- и термостабилизаторов с широким диапазоном температур плавления (50-180°С), пригодные для ввода в перерабатывающее оборудование. Природа добавок в составе «Рециклостаба» обычна для переработки полимеров - фенольные стабилизаторы, фосфиты и процессинговые стабилизаторы. Разница заключается в соотношении компонентов и в подборе оптимального состава в соответствии с конкретной задачей. «Рециклоссорб» применяется тогда, когда важную роль играет светостабилизация, т.е. получаемые изделия эксплуатируются на открытом воздухе. В этом случае увеличена доля светостабилизаторов. Рекомендуемые фирмой уровни ввода - 0,2-0,4 процента.

«Рециклостаб 421» специально разработан для переработки и термической стабилизации отходов пленок ПВД и смесей с высоким его содержанием.

«Рециклостаб 451» разработан для переработки и термической стабилизации отходов ПП и смесей с высоким его содержанием.

«Рециклостаб 811» и «Рециклоссорб 550» используются для продления сроков службы изделий из продуктов вторичной переработки, используемых на солнечном свете, поэтому они содержат больше светостабилизаторов.

Стабилизаторы применяются при получении литьевых или пленочных изделий из вторичных полимеров: ящиков, поддонов, контейнеров, труб, пленок неответственного назначения. Выпускаются в гранулированной, не пылящей форме, без полимерной основы, прессованные гранулы с пределами плавления 50-180°С.

Комплексные концентраты фирмы «Барс-2». Для переработки вторичных полимеров НПФ «Барс-2» выпускает комплексные концентраты на полимерной основе, содержащие кроме стабилизаторов также совмещающие и пластифицирующие добавки. Комплексные концентраты «Ревтол» - для полиолефинов или «Ревтен» - для ударопрочного полистирола, вводятся в количестве 2-3 процентов при переработке вторичных пластиков и благодаря комплексу специальных добавок предотвращают термоокислительное старение вторичных полимеров. Концентраты облегчают их переработку вследствие улучшения реологических характеристик расплава (повышения ПТР), увеличивают прочностные характеристики готовых изделий (их пластичность и стойкость к растрескиванию) по сравнению с изделиями, изготовленными без их применения, облегчают их переработку в результате повышения технологичности материала (снижается крутящий момент и нагрузка на привод). При переработке смеси вторичных полимеров «Ревтол» или «Ревтен» улучшают их совместимость, поэтому физико-механические свойства получаемых изделий также повышаются. Применение «Ревтена» позволяет повысить свойства вторичного УПМ до уровня 80-90 процентов свойств исходного полистирола, предотвратив появление брака.

Сейчас очень актуальна разработка комплексного концентрата для переработки вторичного ПЭТ. Основной бич здесь - пожелтение материала, накопление ацетальдегида, снижение вязкости расплава. Известны добавки западных фирм - «Сибы», «Кларианта», позволяющие преодолеть пожелтение и улучшить перерабатываемость полимера. Однако на Западе и у нас различен подход к использованию вторичного ПЭТ. Если там 90 процентов его используется для получения полиэфирных волокон или технических изделий и добавки для этой цели хорошо разработаны, то наши переработчики стремятся вернуть вторичный ПЭТ в основной процесс - получение преформ и бутылок методами литья и раздува или получение пленок и листов методом плоскощелевой экструзии. В этом случае целевые свойства полимера, на которые необходимо воздействовать, несколько иные - технологичность, формуемость, прозрачность, и рецептура комплексных добавок должна отвечать поставленной цели.


Проникновение полимерных материалов в самые различные области применения, включая нашу повседневную жизнь, в настоящее время воспринимается во всем мире как нечто само собой разумеющееся. И это при том что их победное шествие началось сравнительно поздно – в 1950-х гг., когда объемы их производства составляли только около 1 млн т в год. Однако с ростом производства и потребления пластмасс постепенно обострялись и в настоящее время стали крайне актуальными проблемы утилизации использованных пластиковых изделий. В данном обзоре обсуждается опыт решения этих проблем в Европе, где ведущей в этом отношении является Германия.

Благодаря своим многочисленным преимуществам (в частности, высокой прочности, химической стойкости, возможности придания любой формы и любого цвета, низкой плотности), они быстро проникли во все области применения, включая строительную, автомобильную, авиакосмическую, упаковочную отрасли промышленности, производство бытовой продукции, игрушек, изделий медицинского и фармацевтического назначения.

Уже в 1989 г. полимерные материалы обогнали по объемам производства такой традиционный материал, как сталь (имеются в виду именно объемы, а не масса). В то время их ежегодный выпуск составлял около 100 млн т. В 2002 г. производство полимерных материалов преодолело планку в 200 млн т, а в настоящее время во всем мире ежегодно их производится уже почти 300 млн т. Если рассматривать вопрос в региональном плане, то за прошедшие десятилетия наблюдалось постепенное перемещение мощностей по производству полимерных материалов в направлении Востока.

В результате Азия превратилась в настоящее время в самый мощный регион, где сконцентрировано 44 % всех мировых мощностей. На полиолефины, являющиеся наиболее широко распространенной группой пластмасс, приходится 56 % от общего объема производства; второе место занимает поливинилхлорид, а за ним следуют другие традиционные полимеры – такие как полистирол и полиэтилентерефталат (ПЭТ). Только 15 % от всех производимых полимеров приходится на дорогостоящие материалы технического назначения, используемые в специальных областях. По прогнозам европейской ассоциации производителей полимеров PlasticsEurope (г. Брюссель), в дальнейшем будет продолжаться увеличение объемов выпуска полимерных материалов на душу населения с темпом около 4 % в год. Одновременно с таким успехом на рынке увеличивались и объемы использованных полимерных материалов и изделий. Если в период с 1960-х по 1980-е гг. промышленность полимерных материалов могла еще не уделять особого внимания вопросам целесообразной утилизации и повторного использования бывшей в употреблении продукции, то позднее (особенно после вступления в силу немецкого постановления об упаковках в 1991 г.) эти проблемы стали важной темой. В то время Германия взяла на себя роль первопроходца. Она стала первой страной, в которой были разработаны и реализованы на рынке нормы утилизации и вторичной переработки полимерных отходов. В настоящее время к решению этой проблемы подключились и многие другие европейские страны, разработавшие весьма успешные концепции сбора и вторичного использования полимеров.

Согласно данным ассоциации PlasticsEurope, в 2011 г. в 27 странах Евросоюза, а также в Швейцарии и Норвегии было использовано около 27 млн т полимерных материалов, из которых 40 % пришлось на продукцию краткосрочного применения и 60 % – на изделия долгосрочного применения. В том же году было собрано около 25 млн т бывших в употреблении полимерных материалов. Из них 40 % были подвергнуты захоронению, а 60 % – направлены на вторичную переработку. Более 60 % полимерных отходов поступило из систем сбора использованных упаковок. В меньших количествах бывшие в употреблении полимерные изделия были получены из секторов строительства, автомобилестроения и электроники.

Достойные подражания системы сбора отходов существуют в девяти европейских странах – Швейцарии, Германии, Австрии, Бельгии, Швеции, Дании, Норвегии, Голландии и Люксембурге (перечислены в нисходящем порядке). Доля собираемой использованной полимерной продукции в этих странах составляет от 92 до 99 %. Кроме того, в шести из перечисленных девяти стран обеспечивается самый высокий уровень вторичной переработки этих отходов в Европе: по этому показателю (от 26 % до 35 % от объема собираемых отходов) Норвегия, Швеция, Германия, Голландия, Бельгия и Австрия намного опережают другие страны. Оставшееся количество собираемых отходов подвергается энергетической утилизации.

Не может не радовать тот факт, что в течение последних пяти лет существенно увеличилось не только количество собираемых отходов, но доля отходов, одвергаемых вторичной переработке. Благодаря этому снизились объемы отходов, подвергаемых захоронению. Несмотря на это, сектор вторичной переработки полимерных материалов еще обладает огромными потенциальными возможностями для дальнейшего развития. В значительной степени это относится к странам с низким уровнем их утилизации.

Критически эксперты рассматривают возможности энергетического вторичного использования полимерных материалов, а именно их сжигания, которое многие считают целесообразным способом их вторичной переработки. В Германии 95 % всех мусоросжигательных установок относятся к предприятиям вторичной переработки отходов и, таким образом, имеют разрешение на энергетическое вторичное применение отходов. Оценивая эту ситуацию, Михаэль Скриба (Michael Scriba), коммерческий директор специализирующейся на переработке полимерных материалов компании mtm plastics (г. Нидергебра), отмечает, что с экологической точки зрения энергетическое вторичное применение отходов бесспорно хуже материального.

В рамках индустрии пластмасс вторичная переработка за последние годы превратилась в важный хозяйственный сектор. Еще одна важная проблема, препятствующая развитию сектора вторичной переработки в Европе, заключается в экспорте полимерных отходов, преимущественно на Дальний Восток. По этой причине в Европе остается относительно небольшое количество пригодных для целесообразной вторичной переработки отходов; это способствует существенному усилению конкурентной борьбы и повышению уровня затрат.

Мощная отрасль, поддерживаемая ассоциациями и компаниями

Начиная с 1990-х гг. в качестве инициаторов интенсификации вторичной переработки пластиковых отходов в Германии выступило несколько компаний и ассоциаций, которые посвятили свою деятельность именно этим проблемам и в настоящее время активно работают в европейском масштабе.

Прежде всего, речь идет о компании Der Gruene Punkt – Duales System Deutschland GmbH (DSD) (г. Кельн), которая была основана в 1990 г. как первая дуальная система и сегодня является лидером по предложениям систем обратного приема отходов. К ним относятся наряду с приближенным к домашнему хозяйству сбором и вторичным использованием торговых упаковок экологически безопасная и экономически эффективная вторичная переработка пластиковых элементов электрических приборов и электронной аппаратуры, а также транспортных упаковок, удаление отходов с предприятий и организаций, очистка использованной тары.

В 1992 г. в г. Висбадене была основана компания RIGK GmbH, которая как сертифицированное специализированное предприятие по обслуживанию компаний (разливочных, сбытовых, торговых и импортирующих), являющихся владельцами торговых марок, осуществляет обратный прием использованных и освобожденных от остатков продукции упаковок у своих немецких партнеров и направляет эти упаковки на вторичную переработку.

Важным игроком рынка является также компания BKV, которая была основана в 1993 г. с целью обеспечения гарантированной вторичной переработки полимерных упаковок, собираемых дуальными системами. В настоящее время компания BKV служит своеобразной базовой площадкой для вторичной переработки полимерных материалов, занимаясь наиболее существенными и актуальными проблемами в этой области.

В 1993 г. была основана и еще одна важная ассоциация – Bundesverband Sekundаеrrohstoffe und Entsorgung e. V. (bvse) (г. Бонн), происхождение которой связано с объединением Altpapierverband e. V. В секторе полимерных материалов она обеспечивает компаниям Германии профессиональную и определяемую своими внутриполитическими условиями помощь при заготовке и вторичном использовании полимерных отходов. Наряду с компанией BKV, которая входит в состав ассоциации GKV Gesamtverband Kunststoffverarbeitende Industrie e.V. (г. Бад Хомбург), существуют и другие объединения и организации, занимающиеся вопросами вторичной преработки полимерных материалов. К ним относятся, в частности, компания tecpol Technologieentwicklungs GmbH, специализирующаяся на экологически эффективном рециклинге пластиковых отходов, и специализированная группа по компаундированию и вторичной переработке в организации TecPart e. V., являющейся базовым объединением ассоциации GKV. В 2002 г. ведущие немецкие производители пластиковых профилей объединились в инициативную группу Rewindo Fenster-RecyclingService GmbH (г. Бонн). Основная цель при этом заключалась в увеличении доли подвергаемых вторичной переработке демонтированных полимерных окон, дверей и рольставней (см. фото у заголовка статьи), что способствовало бы повышению стабильности и степени ответственности при проведении хозяйственной деятельности.

Само собой разумеется, в решение проблем включились крупные, имеющие собственные рабочие группы по вторичной переработке пластмасс и в течение десятилетий успешно зарекомендовавшие себя на практике ассоциации полимер- ной промышленности – такие, как PlasticsEurope и IK Industrieverband Kunststoffverpackungen e. V. (г. Франкфурт).

Успешные проверенные технологии вторичной переработки

Точную информацию о вторичной переработке пластмасс в Германии предоставляют результаты анализа, которые с периодичностью один раз в два года публикуются по заданию входящих в состав VDMA компаний и ассоциаций – BKV, PlasticsEurope Deutschland e. V., bvse, Fachverband Kunststoff und Gummimaschinen, а также союза IK. Согласно этим данным, в Германии в 2011 г. образовалось около 5 млн т пластиковых отходов, наибольшая часть (82 %) которых – это отходы потребления. Из оставшихся 18 %, представляющих собой промышленные отходы, доля пригодных для вторичной переработки материалов может достигать 90 %. Как уже проверено на практике, рассортированные промышленные отходы могут быть успешно подвергнуты внутризаводской вторичной переработке непосредственно на тех предприятиях, где они образовались (фото 1).

В случае отходов потребления доля материального (то есть без сжигания и захоронения) вторичного использования составляет всего лишь 30–35 %. В этой области также уже существуют реализованные на практике способы вторичной переработки рассортированных по видам отходов. В качестве примеров можно привести опыт переработки поливинилхлорида (ПВХ) и ПЭТ. В результате своей 10-летней деятельности компания Rewindo, использующая собственную технологию вторичной переработки отслуживших свой срок поливинилхлоридных окон и дверей, завоевала прочное положение на рынке.

В последние годы объем вторичного ПВХ, производимого из собираемых бывших в употреблении изделий специализирующимися в этой области компаниями Tоеnsmeier Kunststoffe GmbH & Co. KG (г. Хектер) и Veka Umwelttechnik GmbH (г. Херзельберг-Хайних) поддерживался на уровне около 22 тыс. т с тенденцией к увеличению.

ПЭТ-бутылки также собираются и перерабатываются после надлежащей сортировки. Ассортимент новой продукции, изготавливаемой из получаемого при этом вторичного сырья, простирается от волокон и пленок до новых бутылок. Различные компании, такие как австрийские фирмы Erema GmbH (г. Ансфельден), Starlinger & Co. GmbH (Вена) и NGR GmbH (г. Фельдкирхен), создали специальные производственные линии для переработки ПЭТ. Недавно Европейское ведомство по безопасности пищевых продуктов EFSA опубликовало положительное заключение в отношении технологии recoSTAR PET iV+ производства вторичного ПЭТ, пригодного для изготовления пищевой упаковки (разработчик – компания Starlinger).

Мнение EFSA служит основным для сертификации подобных технологий Европейской комиссией и государствами – членами Евросоюза.

Чтобы добиться такого результата, заинтересованная компания должна доказать, что разработанные ею технология и оборудование для переработки полимерных отходов снижают степень загрязнения соответствующего ПМ до уровня, безопасного для здоровья человека.

Стандартный сценарий так называемых «провокационных» испытаний (challenge-test) на эффективность очистки вторичного ПЭТ, получаемого обычно из отходов в виде использованных бутылок, предусматривает использование пяти контрольных «загрязняющих» веществ – толуола, хлороформа, фенилциклогексана, бензофенона и линдана, отличающихся химическим составом, молекулярной массой и, следовательно, миграционной способностью. Сами испытания проводятся в несколько этапов.

Сначала промывают хлопья вторичного ПЭТ, после чего их «загрязняют» контрольным веществом с заданной концентрацией (3 промилле) и снова промывают. Затем производят переработку этих повторно вымытых ПЭТ- хлопьев по тестируемой технологии в регранулят ПЭТ и определяют остаточную концентрацию «загрязняющей» среды, по которой рассчитывают степень очистки вторичного ПЭТ. В заключение оба показателя сравнивают с предельно допустимыми для них значениями и делают выводы об эффективности очистки.

В дополнение к стандартным испытаниям компания Starlinger самостоятельно решила ужесточить их сценарий, проведя их в так называемых «худших» для материала условиях (Worst-Case-Szenario), при которых перерабатывались ПЭТ-хлопья, не вымытые после их загрязнения модельными средами. Предварительно перед каждым видом испытаний – для обеспечения чистоты эксперимента и стабильных условий его проведения – на установке recoSTAR PET 165 iV+ (фото 2) осуществляли переработку 80–100 кг прозрачного первичного ПЭТ, чтобы очистить рабочие органы установки от остатков предыдущей партии материала. Испытуемые же ПЭТ-хлопья окрашивались в синий цвет; поэтому выход из этой же установки регранулята ПЭТ только синего цвета свидетельствовал о том, что в процессе переработки не произошло его смешивания с чистым ПЭТ и выдерживался принцип FIFO (first-in, first-out: «первым вошел, первым вышел»). Результаты испытаний, проведенных по стандартному сценарию, показали, что процесс recoSTAR PET iV обеспечивает настолько эффективную очистку вторичного ПЭТ, что ее показатели находятся значительно выше порогового уровня EFSA (см. таблицу). Даже в случае линдана (нелетучее неполярное вещество) степень очистки была более 99,9 %, хотя пороговым значением является 89,67 %. Практически те же результаты показали испытания, проведенные по «ужесточенному» сценарию, за исключением бензофенона и линдана. Но и в этих случаях степень очистки ПЭТ удовлетворяла требованиям EFSA. Сокращенное название фирмы NGR расшифровывается достаточно амбициозно – как «Следующее поколение машин для рециклинга» (Next Generation Recyclingmaschinen). И став в мае этого года 100%-собственником фирмы BRITAS Recycling Anlagen GmbH (г. Ханау, Германия), NGR заметно усилила свои позиции на европейском и других региональных рынках мира. Дело в том, что фирма BRITAS известна как разработчик производитель фильтрующих систем для расплавов сильно загрязненных полимерных материалов, в том числе отходов потребительской упаковки (фото 3).

В свою очередь NGR разрабатывает и производит оборудование для вторичной переработки как промышленных так и потребительских полимерных отходов, имея разветвлен- ный рынок сбыта своей продукции.

Обе машиностроительные фирмы уверены в положительном синергетическом эффекте от состоявшегося объединения. Компания Gneuss Kunststofftechnik GmbH (г. Бад Эйнхаузен) достигла на рынке большого успеха благодаря своему экструдеру типа MRS (фото 4), на использование которого имеется даже допуск FDA (Food and Drug Administration) – управления министерства торговли США по контролю за качеством пищевых продуктов, медикаментов и косметических средств. Кроме того, машиностроители предлагают различные системы для сушки, такие как инфракрасная вращающаяся труба компании Kreyenborg Plant Technology GmbH (г. Зенден), а также специальные системы фильтрации для переработки ПЭТ или технологии кристаллизации, такие как способ Crystall-Cut компании Automatik Plastics Machinery (г. Гросостхайм). Системы замкнутого цикла, такие как система PETcycle успешно применяются для изготовления новых бутылок из бывших в употреблении бутылок.

Резюмируя все вышеизложенное, можно констатировать, что система вторичной переработки ПЭТ с ежегодным объемом на уровне около 1 млн т успешно ре- ализуется в Европе. Аналогичная ситуация наблюдается в области переработки рассортированных полиолефиновых отходов, сортировка которых без особых осложнений реализуется с помощью соответствующих технологий их разделения. Только в Германии существуют десять крупных и множество мелких приготовительных предприятий, специализирующихся на производстве пригодного для литья под давлением вторичного гранулята из бытовых и промышленных полиолефиновых отходов. Этот гранулят может быть в дальнейшем использован для производства поддонов, ванн, ведер, труб и других видов продукции (фото 5).

Трудности вторичной переработки

Дополнительные сложности для вторичной переработки создают полимерные изделия, изготовленные из нескольких разных материалов, которые не могут быть с разумными затратами отделены друг от друга, а также полимерные упаковки, не поддающиеся полному опорожнению. Проблематичными для вторичной переработки являются и отходы в виде использованной потребительской пленки по причине значительного загрязнения поверхности, требующего значительных расходов на обработку.

По словам Скриба, в этой области хотя и существуют опытные эксперты по вторичному использованию, но отсутствуют реальные рынки сбыта европейского значения. Дополнительные осложнения возникают также при обращении с производимыми в большом многообразии ПЭТ-бутылками, не предназначенными для напитков; это существенно ограничивает объемы их вторичной переработки. До настоящего времени плохо поддаются рециклингу отходы из автомобильной промышленности и сектора электроники.

В таких проблемных случаях от переработчиков и машиностроителей требуются особые технические решения (фото 6). В частности, одно из таких решений, касающееся переработки поставляемых компанией DSD потребительских пленочных отходов, в недавнем прошлом компания Herbold Meckesheim GmbH (г. Меккесхайм) предоставила специализирующейся на утилизации отходов компании WRZ-Hоеrger GmbH & Co. KG (г. Зонтхайм). Поставленная «под ключ» производственная установка, состоящая из системы отделения посторонних веществ, стадии мокрого измельчения и уплотнительного устройства, позволяет перерабатывать ежегодно 7 тыс. т отходов в сыпучий агломерат с высокой насыпной плотностью, пригодный для изготовления изделий по технологии литья под давлением (фото 7).

В целом в программу поставок компании Herbold Meckesheim, известной и на российском рынке, входит разнообразное оборудование для переработки как сильно загрязненных, так и смешанных отходов, как твердых так и трудно перерабатываемых мягких отходов пластмасс – моечные установки и сушилки, шредеры, агломераторы, мельницы для тонкого измельчения.

Основными заявленными приоритетами при разработке оборудования являются его компактность, повышенная производительность и энергоэффективность. На выставке «К- 2013» фирма продемонстрирует ряд новинок, среди которых:

Новая механическая сушилка модели HVT с вертикальным расположением ротора, экономящая производственную площадь, удобная в обслуживании и потребляющая существенно меньшую энергию при сушке ПЭТ-хлопьев (фото 8);
измельчитель модели SML SB с принудительной шнековой пода- чей отходов в резательный узел, что позволяет уплотнить подаваемый материал и повысить благодаря этому производительность переработки (рис. 1);
машина для размалывания крупногабаритных твердых отходов в виде, например, плит или труб, считающихся наиболее трудным объектом переработки. Специально для переработки смешанных фракций компания Erema вместе с компанией Coperion GmbH & Co. KG (г. Штуттгарт) разработала комбинированную установку Corema для вторичной переработки и компаундирования отходов (фото 9). Характерной особенностью этой установки является ее пригодность для переработки широкого спектра материалов. По словам коммерческого директора компании Erema Манфреда Хакля Manfred Hackl), речь идет в данном случае об оптимальном решении для переработки получаемых экономичным способом смешанных отходов, в частности, для изготовления из отходов полипропиленовых нетканых материалов компаунда, содержащего 20 % талька, или для переработки отходов в виде смеси ПЭ и ПЭТ с добавками. Другим удачным примером объединения усилий нескольких партнеров для решения задач в области вторичной переработки является поточная линия по вторичной переработке бывших в употреблении сельскохозяйственных пленок, рециклинг которых сложен и затратен из-за их малой толщины, мягкости и загрязненности. Задачу удалось решить, объединив в одной линии специально оптимизированный измельчителяь модели Power Universo 2800 (производитель – компания Lindner reSource) и экструзионную установку для вторичной переработки полимерных материалов модели 1716 TVEplus производитель – компания Erema), что позволило получать высококачественный регранулят.

Оборудование, универсальное с точки зрения формы перерабатываемых в регранулят отходов (пленки, волокна, хлопья ПЭТ-бутылок, отходы вспененных полимерных материалов), предлагает австрийская фирма ARTEC Machinery. Толчком к дальнейшему развитию и расширению производственных возможностей послужило ее 100%-е вхождение в 2010 г. в «семейную» группу GAW Technology, членом которой является также фирма ECON, дополняющая программу поставок соответствующими экструзионными линиями для переработки в регранулят измельченных отходов. За счет конструкторскотехнологической модернизации выпускаемого оборудования за эти годы удалось поднять в среднем на 25 % его производительность. Модульный принцип, который исповедует ARTEC при проектировании своих установок, позволяет, как из кубиков, собирать и монтировать оборудование для конкретного применения, которое в настоящее время выпускается с производительностью от 150 до 1600 кг в час (рис. 2).

Специфическая экструзионная установка с экструдером типа MRS (см. фото 4), предназначенная для переработки измельченных отходов из полиамида ПА11, была поставлена также компанией Gneuss британской фирме K2 Polymer.

Исходный материал получают в результате измельчения глубоководных нефтепроводов, которые становятся ненужными после того, как иссякнет источник нефти, и должны быть извлечены на сушу.

Экструдер MRS (Multi Rotation System) позволяет без применения химической очистки обеспечить одноступенчатую очистку и переработку этих высококачественных, но сильно загрязненных за время многолетнего контакта с нефтью полимерных отходов. Этот перечень можно было бы дополнить и многими другими примерами. В заключение следует отметить, что сектор вторичной переработки за последние годы превратился в важную сферу хозяйственной деятельности. Несмотря на то что многие технологии уже успешно прошли проверку практикой, в области вторичной переработки остаются большие потенциальные возможности для дальнейшего развития. Решение существующих проблем должно начинаться с разработки и изготовления в максимальной степени пригодных для вторичной переработки полимерных изделий.

Определенные возможности для продвижения вперед остаются также в области разработки оптимизированных технологических решений и создания соответствующего оборудования для переработки сложных отходов.

В известной степени прогрессу в этой области могут способствовать и политические меры, которые должны в каждой стране обеспечивать более широкое внедрение оптимальных концепций сбора и вторичной переработки отходов.

Новые и проверенные решения в области вторичной переработки полимерных материалов будут широко представлены с 16 по 23 октября 2013 г. на Международной выставке «К» в Дюссельдорфе.

Подготовил к. т. н. В. Н. Мымрин
с использованием пресс-материалов выставочной компании Messe Duesseldorf
Recycling of Plastics in Europe:
New and Proven Solutions The penetration of plastics in a v ariety of
applications, including our d aily liv es, ar e now seen worldwide as a matter of course. And this
despite the fact that their winning streak started relatively late – 60 years ago, when their output
accounted for only about 1 million tons per year.

However, with the gr owth of pr oduction and consumption of plastics gradually sharpened
and has now become a critical problem disposing of used plastic pr oducts. Although many
processes hav e alr eady become established, recycling still has plenty of potential for
improvement. A first step could be the recyclable design of plastics items that should be examined
closely with a view to later r ecovery. Suitable recycling processes and machine solutions for the
processing of problematical wastes offer a good deal of scope for further dev elopment. This
review discusses the experience of solving these problems in Eur ope, wher e the leading in this
respect is Germany.



Что еще почитать